Space & Astronomy
24 min read
CRISPR-Targetable Genes for Wheat Blast Resistance Unveiled
Nature
January 18, 2026•4 days ago
AI-Generated SummaryAuto-generated
Researchers identified wheat susceptibility genes that can be targeted for resistance to the wheat blast fungus. This involves genomic surveillance to understand pathogen evolution and identify genes that, when manipulated using CRISPR technology, can confer broad-spectrum resistance. This approach offers a new strategy to combat the devastating wheat blast disease and enhance global food security.
Latorre, S. M. et al. Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS Biol. 21, e3002052. https://doi.org/10.1371/journal.pbio.3002052 (2023).
Islam, M. T. et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14, 84. https://doi.org/10.1186/s12915-016-0309-7 (2016).
Tembo, B. et al. Detection and characterization of Magnaporthe oryzae pathotype Triticum causing wheat blast disease on rain-fed wheat in Zambia. PLoS One. 15, e0238724. https://doi.org/10.1371/journal.pone.0238724 (2020).
Farman, M. et al. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the united States. Plant Dis. 101, 684–692. https://doi.org/10.1094/PDIS-05-16-0700-RE (2017).
Barragan, A. C. et al. Wild grass isolates of Magnaporthe (Syn. Pyricularia) spp. From Germany can cause blast disease on cereal crops. BioRxiv 505667. https://doi.org/10.1101/2022.08.29.505667 (2022).
Islam, M. T. et al. Wheat blast: a new threat to food security. Phytopathol. Res. 2, 1–13 (2020).
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329. https://doi.org/10.1038/nature05286 (2006).
Cruz, C. D. & Valent, B. Wheat blast disease: danger on the move. Trop. Plant. Pathol. 42, 210–222. https://doi.org/10.1007/s40858-017-0159-z (2017).
Nizolli, V. O. et al. Wheat blast: the last enemy of hunger fighters. Genet. Mol. Biol. 46, e20220002. https://doi.org/10.1590/1678-4685-GMB-2022-0002 (2023).
Ge, X. et al. Tempered Mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace. Sci. Rep. 6, 29558 (2016).
Kusch, S. & Panstruga, R. mlo-based resistance: an apparently universal weapon to defeat powdery mildew disease. Mol. Plant Microbe Interact. 30, 179–189. https://doi.org/10.1094/mpmi-12-16-0255-cr (2017).
Li, S. et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455–460. https://doi.org/10.1038/s41586-022-04395-9 (2022).
Islam, T., Ansary, M. W. R. & Rahman, M. M. Magnaporthe oryzae and its pathotypes: a potential plant pandemic threat to global food security. In Plant Relationships: Fungal-Plant Interactions, 425–462. https://doi.org/10.1007/978-3-031-16503-0_18 (Springer, 2022).
Nicolas, L. B. et al. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).
Chowdhury, R. H. et al. Drought-responsive genes in tomato: meta-analysis of gene expression using machine learning. Sci. Rep. 13, 19374 (2023).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).
Gupta, D. R. et al. Suitable methods for isolation, culture, storage and identification of wheat blast fungus Magnaporthe oryzae triticum pathotype. Phytopathol. Res. 2, 30. https://doi.org/10.1186/s42483-020-00070-x (2020).
Zhang, B., Han, X., Yuan, W. & Zhang, H. TALEs as double-edged swords in plant-pathogen interactions: progress, challenges and perspectives. Plant. Commun. 3, 100318. https://doi.org/10.1016/j.xplc.2022.100318 (2022).
Huai, B. et al. TaSTP13 contributes to wheat susceptibility to Stripe rust possibly by increasing cytoplasmic hexose concentration. BMC Plant Biol. 20, 49. https://doi.org/10.1186/s12870-020-2248-2 (2020).
Römer, P. et al. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol. 187, 1048–1057. https://doi.org/10.1111/j.1469-8137.2010.03217.x (2010).
Yuan, T., Li, X., Xiao, J. & Wang, S. Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. Mol. Plant. 4, 300–309. https://doi.org/10.1093/mp/ssq076 (2011).
Chen, Y. et al. The role of sugar transporters in the battle for carbon between plants and pathogens. Plant Biotechnol. J. 22, 2844–2858 (2024).
Ricardo et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).
Garcia-Ruiz, H., Szurek, B. & Van den Ackerveken, G. Stop helping pathogens: engineering plant susceptibility genes for durable resistance. Curr. Opin. Biotechnol. 70, 187–195. https://doi.org/10.1016/j.copbio.2021.05.005 (2021).
Schmitt-Keichinger, C. Manipulating cellular factors to combat viruses: a case study from plant eukaryotic translation initiation factors eIF4. Front. Microbiol. 10, 17. https://doi.org/10.3389/fmicb.2019.00017 (2019).
Cernadas, R. A. et al. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog. 10, e1003972 (2014).
Asuke, S. et al. Evolution of wheat blast resistance gene Rmg8 accompanied by differentiation of variants recognizing the powdery mildew fungus. Nat. Plants. 10, 971–983. https://doi.org/10.1038/s41477-024-01711-1 (2024).
O’Hara, T. et al. The wheat powdery mildew resistance gene Pm4 also confers resistance to wheat blast. Nat. Plants. 10, 984–993. https://doi.org/10.1038/s41477-024-01718-8 (2024).
Islam, T. & Azad, R. B. Rmg8 gene against wheat blast. Nat. Plants. 10, 836–837. https://doi.org/10.1038/s41477-024-01690-3 (2024).
Kourelis, J. et al. NLR immune receptor–nanobody fusions confer plant disease resistance. Science 379, 934–939. https://doi.org/10.1126/science.abn4116 (2023).
Inoue, Y. et al. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. New Phytol. 229, 488–500. https://doi.org/10.1111/nph.16894 (2021).
Horo, J. T. et al. Effectiveness of the wheat blast resistance gene Rmg8 in Bangladesh suggested by distribution of an AVR-Rmg8 allele in the Pyricularia oryzae population. Phytopathology 110, 1802–1807. https://doi.org/10.1094/PHYTO-03-20-0073-R (2020).
Anh, V. L. et al. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Mol. Plant Pathol. 19, 1252–1256. https://doi.org/10.1111/mpp.12609 (2018).
Chen, L. Q. et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211. https://doi.org/10.1126/science.1213351 (2012).
van Schie, C. C. & Takken, F. L. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52, 551–581. https://doi.org/10.1146/annurev-phyto-102313-045854 (2024).
Saintenac, C. et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to Zymoseptoria tritici. Nat. Genet. 50, 368–374. https://doi.org/10.1038/s41588-018-0051-x (2018).
Babaeizad, V. et al. Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor. Appl. Genet. 118, 455–463. https://doi.org/10.1007/s00122-008-0912-2 (2009).
Navia-Urrutia, M. et al. Effector genes in Magnaporthe oryzae triticum as potential targets for incorporating blast resistance in wheat. Plant Dis. 106, 1700–1712. https://doi.org/10.1094/PDIS-10-21-2209-RE (2022).
Castroagudín, V. L. et al. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology. 105, 284–294 (2015).
Pequeno, D. N. et al. Production vulnerability to wheat blast disease under climate change. Nat. Clim. Change. 14, 1–6 (2024).
Pallab, B. et al. Management of wheat blast disease in Bangladesh caused by Magnaporthe oryzae pathotype Triticum. Plant. Health Cases. phcs20250025. https://doi.org/10.1079/planthealthcases.2025.0025 (2025).
Hasnat, S. et al. Structural insights into AVR-Rmg8 recognition mechanisms by the wheat blast resistance gene. Rmg8 Sci. Rep. 15, 45777. https://doi.org/10.1038/s41598-025-28559-5 (2025).
Rate this article
Login to rate this article
Comments
Please login to comment
No comments yet. Be the first to comment!
