Friday, January 23, 2026
Space & Astronomy
71 min read

How Trichoderma Harzianum Recognizes Plants & Activates New Metabolites

Nature
January 20, 20262 days ago
Plant recognition by Trichoderma Harzianum elicits upregulation of a novel secondary metabolite cluster required for colonization

AI-Generated Summary
Auto-generated

*Trichoderma harzianum* recognizes plant presence, activating a novel secondary metabolite cluster. This activation is crucial for the fungus's colonization of the plant. The research highlights the molecular mechanisms behind this interaction, revealing a key step in how this beneficial fungus establishes itself in its host environment.

Harman, G. E. et al. Uses of Trichoderma spp. To alleviate or remediate soil and water pollution. Adv. Appl. Microbiol. 56, 313–330. https://doi.org/10.1016/S0065-2164(04)56010-0 (2004). Averill, C. et al. Defending earth’s terrestrial Microbiome. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01228-3 (2022). Doehlemann, G. et al. Plant pathogenic fungi. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016 (2017). Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356. https://doi.org/10.1146/annurev-phyto-080614-120207 (2015). Raza, M. M. & Bebber, D. P. Climate change and plant pathogens. Curr. Opin. Microbiol. 70, 102233. https://doi.org/10.1016/j.mib.2022.102233 (2022). Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 751, 141763. https://doi.org/10.1016/j.scitotenv.2020.141763 (2021). Liu, X. et al. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821. https://doi.org/10.1016/j.isci.2022.103821 (2022). Khan, R. A. A. et al. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode. Microorganisms https://doi.org/10.3390/microorganisms8030401 (2020). Syed, A. et al. Emerging microbial biocontrol strategies for plant pathogens. Plant. Sci. 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012 (2018). Rangel, L. I. et al. Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. Plant. J. 108, 632–645. https://doi.org/10.1111/tpj.15490 (2021). Sood, M. et al. Trichoderma: the secrets of a multitalented biocontrol agent. Plants (Basel) https://doi.org/10.3390/plants9060762 (2020). Ramirez-Valdespino, C. A. et al. Trichoderma as a model to study effector-like molecules. Front. Microbiol. 10, 1030. https://doi.org/10.3389/fmicb.2019.01030 (2019). Tyskiewicz, R. et al. Trichoderma: The current status of Its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23042329 (2022). Schalamun, M. & Schmoll, M. Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. Front. Fungal Biology https://doi.org/10.3389/ffunb.2022.1002161 (2022). Woo, S. L. et al. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00819-5 (2022). Druzhinina, I. S. et al. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 9, 749–759. https://doi.org/10.1038/nrmicro2637 (2011). Harman, G. E. et al. Trichoderma species–opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56 (2004). Guzman-Guzman, P. et al. Trichoderma species: versatile plant symbionts. Phytopathology 109, 6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW (2019). Contreras-Cornejo, H. A. et al. Ecological functions of Trichoderma spp. And their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92, fiw036. https://doi.org/10.1093/femsec/fiw036 (2016). Haueisen, J. & Stukenbrock, E. H. Life cycle specialization of filamentous pathogens - colonization and reproduction in plant tissues. Curr. Opin. Microbiol. 32, 31–37. https://doi.org/10.1016/j.mib.2016.04.015 (2016). Chaverri, P. et al. Systematics of the Trichoderma Harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107, 558–590. 10.3852/ (2015). Harman, G. E. & Uphoff, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica (Cairo) https://doi.org/10.1155/2019/9106395 (2019). Bailey, B. & Melnick, R. The endophytic Trichoderma CABI International (2013). Bazafkan, H. et al. Mating type dependent partner sensing as mediated by VEL1 in Trichoderma Reesei. Mol. Microbiol. 96, 1103–1118. https://doi.org/10.1111/mmi.12993 (2015). Leeder, A. C. et al. The social network: Deciphering fungal Language. Nat. Rev. Microbiol. 9, 440–451. https://doi.org/10.1038/nrmicro2580 (2011). Macias-Rodriguez, L. et al. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol. Res. 240, 126552. https://doi.org/10.1016/j.micres.2020.126552 (2020). Lombardi, N. et al. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol. Plant. Microbe Interact. https://doi.org/10.1094/MPMI-12-17-0310-R (2018). Joo, J. H. & Hussein, K. A. Biological control and plant growth promotion properties of volatile organic Compound-producing antagonistic Trichoderma spp. Front. Plant. Sci. 13, 897668. https://doi.org/10.3389/fpls.2022.897668 (2022). Schweiger, R. et al. Insights into metabolic changes caused by the Trichoderma virens-maize root interaction. Mol. Plant. Microbe Interact. 34, 524–537. https://doi.org/10.1094/MPMI-04-20-0081-R (2021). Newman, M. A. et al. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant. Sci. 4, 139. https://doi.org/10.3389/fpls.2013.00139 (2013). Turra, D. & Di Pietro, A. Chemotropic sensing in fungus-plant interactions. Curr. Opin. Plant. Biol. 26, 135–140. https://doi.org/10.1016/j.pbi.2015.07.004 (2015). Turra, D. et al. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527, 521–524. https://doi.org/10.1038/nature15516 (2015). Nordzieke, D. E. et al. NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New. Phytol. 224, 1600–1612. https://doi.org/10.1111/nph.16085 (2019). Turra, D. et al. Hyphal chemotropism in fungal pathogenicity. Semin Cell. Dev. Biol. 57, 69–75. https://doi.org/10.1016/j.semcdb.2016.04.020 (2016). Stallforth, P. et al. Functional modulation of chemical mediators in microbial communities. Trends Biochem. Sci. 48, 71–81. https://doi.org/10.1016/j.tibs.2022.07.006 (2023). He, D. C. et al. Biological control of plant diseases: an evolutionary and eco-economic consideration. Pathogens https://doi.org/10.3390/pathogens10101311 (2021). Karlsson, M. et al. Necrotrophic mycoparasites and their genomes. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0016-2016 (2017). Lehner, S. M. et al. Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by trichoderma spp. Appl. Environ. Microbiol. 79, 18–31. https://doi.org/10.1128/AEM.02339-12 (2013). Zeilinger, S. et al. Secondary metabolism in Trichoderma - chemistry Meets genomics. Fungal Biology Reviews. 30, 74–90. https://doi.org/10.1016/j.fbr.2016.05.001 (2016). Vinale, F. & Sivasithamparam, K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytother Res. 34, 2835–2842. https://doi.org/10.1002/ptr.6728 (2020). Shenouda, M. L. & Cox, R. J. Molecular methods unravel the biosynthetic potential of Trichoderma species. RSC Adv. 11, 3622–3635. https://doi.org/10.1039/d0ra09627j (2021). Druzhinina, I. S. et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 14, e1007322. https://doi.org/10.1371/journal.pgen.1007322 (2018). Druzhinina, I. S. et al. Several steps of lateral gene transfer followed by events of ‘birth-and-death’ evolution shaped a fungal sorbicillinoid biosynthetic gene cluster. BMC Evol. Biol. 16, 269. https://doi.org/10.1186/s12862-016-0834-6 (2016). Soucy, S. M. et al. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 16, 472–482. https://doi.org/10.1038/nrg3962 (2015). Huang, J. Horizontal gene transfer in eukaryotes: the weak-link model. Bioessays 35, 868–875. https://doi.org/10.1002/bies.201300007 (2013). Leger, M. M. et al. Demystifying eukaryote lateral gene transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). Bioessays 40, e1700242. https://doi.org/10.1002/bies.201700242 (2018). Martin, W. F. Too much eukaryote LGT. Bioessays https://doi.org/10.1002/bies.201700115 (2017). Danchin, E. G. Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? BMC Biol. 14, 101. https://doi.org/10.1186/s12915-016-0330-x (2016). Compant, S. et al. Draft genome sequence of the root-colonizing fungus Trichoderma harzianum B97. Genome Announc https://doi.org/10.1128/genomeA.00137-17 (2017). Lareen, A. et al. Plant root-microbe communication in shaping root microbiomes. Plant. Mol. Biol. 90, 575–587. https://doi.org/10.1007/s11103-015-0417-8 (2016). Brownlee, A. G. & Arst, H. N. Jr. Nitrate uptake in Aspergillus Nidulans and involvement of the third gene of the nitrate assimilation gene cluster. J. Bacteriol. 155, 1138–1146 (1983). Johnstone, I. L. et al. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus Nidulans. Gene 90, 181–192 (1990). Gao, R. et al. The evolutionary and functional paradox of cerato-platanins in fungi. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00696-20 (2020). Gomes, E. V. et al. The cerato-platanin protein Epl-1 from Trichoderma Harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci. Rep. 5, 17998. https://doi.org/10.1038/srep17998 (2015). Gomes, E. V. et al. Involvement of Trichoderma Harzianum Epl-1 protein in the regulation of Botrytis virulence- and tomato defense-related genes. Front. Plant. Sci. 8, 880. https://doi.org/10.3389/fpls.2017.00880 (2017). Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612. https://doi.org/10.1093/nar/gkaa1074 (2021). Lind, A. L. et al. Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus Aspergillus. PLoS Genet. 11, e1005096. https://doi.org/10.1371/journal.pgen.1005096 (2015). Kurucz, V. et al. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genom. 19, 357. https://doi.org/10.1186/s12864-018-4730-x (2018). Losada, L. et al. Large-scale transcriptional response to hypoxia in Aspergillus fumigatus observed using RNAseq identifies a novel hypoxia regulated NcRNA. Mycopathologia 178, 331–339. https://doi.org/10.1007/s11046-014-9779-8 (2014). Kimura, M. et al. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J. Biol. Chem. 273, 1654–1661. https://doi.org/10.1074/jbc.273.3.1654 (1998). Cardoza, R. E. et al. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl. Environ. Microbiol. 77, 4867–4877 (2011). Shentu, X. et al. Tri11, tri3, and tri4 genes are required for trichodermin biosynthesis of trichoderma Brevicompactum. AMB Express. 8, 58. https://doi.org/10.1186/s13568-018-0585-4 (2018). Degenkolb, T. et al. The Trichoderma Brevicompactum clade: a separate lineage with new species, new peptaibiotics, and Mycotoxins. Mycological Progress. 7, 177–219. https://doi.org/10.1007/s11557-008-0563-3 (2008). Lamdan, N. L. et al. Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol. Cell. Proteom. 14, 1054–1063. https://doi.org/10.1074/mcp.M114.046607 (2015). Malinich, E. A. et al. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea Mays roots. BMC Genom. 20, 280. https://doi.org/10.1186/s12864-019-5651-z (2019). Moran-Diez, M. E. et al. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genom. 16, 8. https://doi.org/10.1186/s12864-014-1208-3 (2015). Nogueira-Lopez, G. et al. The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an Inhibition of plant defence and scavenging oxidative stress secreted proteins. Front. Plant. Sci. 9, 409. https://doi.org/10.3389/fpls.2018.00409 (2018). Rubio, M. B. et al. Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. Microbiology 158, 119–128. https://doi.org/10.1099/mic.0.052118-0 (2012). Atanasova, L. et al. Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In Trichoderma - Biology and Applications (eds Mukherjee, P. K. et al.) 10–42 (CAB International, 2013). Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–704. https://doi.org/10.1093/nar/gkt1183 (2014). de Man, T. J. et al. Small genome of the fungus Escovopsis weberi, a specialized disease agent of ant agriculture. Proc. Natl. Acad. Sci. U S A. 113, 3567–3572. https://doi.org/10.1073/pnas.1518501113 (2016). Wang, X. et al. Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genom. 16, 28. https://doi.org/10.1186/s12864-014-1190-9 (2015). Schafhauser, T. et al. Draft genome sequence of Talaromyces Islandicus (Penicillium islandicum) WF-38-12, a neglected mold with significant biotechnological potential. J. Biotechnol. 211, 101–102. https://doi.org/10.1016/j.jbiotec.2015.07.004 (2015). Sbaraini, N. et al. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genom. 17, 736. https://doi.org/10.1186/s12864-016-3067-6 (2016). Donzelli, B. G. & Krasnoff, S. B. Molecular genetics of secondary chemistry in Metarhizium fungi. Adv. Genet. 94, 365–436. https://doi.org/10.1016/bs.adgen.2016.01.005 (2016). Gilchrist, C. L. M. et al. Cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters. Bioinform Adv. 1, vbab016. https://doi.org/10.1093/bioadv/vbab016 (2021). Gilchrist, C. L. M. & Chooi, Y. H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475. https://doi.org/10.1093/bioinformatics/btab007 (2021). Rolfe, S. A. et al. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73–82. https://doi.org/10.1016/j.mib.2019.10.003 (2019). Harman, G. et al. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant. Sci. 11, 610065. https://doi.org/10.3389/fpls.2020.610065 (2020). Hanson, J. R. The chemistry of the bio-control agent, Trichoderma Harzianum. Sci. Prog. 88, 237–248. https://doi.org/10.3184/003685005783238372 (2005). Guo, R. et al. Structures and biological activities of secondary metabolites from Trichoderma harzianum. Mar. Drugs https://doi.org/10.3390/md20110701 (2022). Keswani, C. et al. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98, 533–544. https://doi.org/10.1007/s00253-013-5344-5 (2014). Villalobos-Escobedo, J. M. et al. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis. Plant. J. 103, 2178–2192. https://doi.org/10.1111/tpj.14891 (2020). Subramoni, S. et al. Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front. Plant. Sci. 5, 322. https://doi.org/10.3389/fpls.2014.00322 (2014). Beauchamp, C. J. et al. Fungal catabolism of crown gall opines. Appl. Environ. Microbiol. 56, 150–155. https://doi.org/10.1128/aem.56.1.150-155.1990 (1990). Morey, J. R. & Kehl-Fie, T. E. Bioinformatic mapping of opine-like zincophore biosynthesis in bacteria. mSystems. https://doi.org/10.1128/mSystems.00554-20. McFarlane, J. S. et al. Staphylopine and Pseudopaline dehydrogenase from bacterial pathogens catalyze reversible reactions and produce stereospecific metallophores. J. Biol. Chem. 294, 17988–18001. https://doi.org/10.1074/jbc.RA119.011059 (2019). Song, L. et al. Mechanistic insights into staphylopine-mediated metal acquisition. Proc. Natl. Acad. Sci. U S A. 115, 3942–3947. https://doi.org/10.1073/pnas.1718382115 (2018). Spatafora, J. W. & Bushley, K. E. Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Curr. Opin. Plant. Biol. 26, 37–44. https://doi.org/10.1016/j.pbi.2015.05.030 (2015). Sheng, H. et al. Metarhizium: an opportunistic middleman for multitrophic lifestyles. Curr. Opin. Microbiol. 69, 102176. https://doi.org/10.1016/j.mib.2022.102176 (2022). Sasan, R. K. & Bidochka, M. J. The insect-pathogenic fungus Metarhizium Robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 99, 101–107. https://doi.org/10.3732/ajb.1100136 (2012). Wyrebek, M. et al. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiol. (Reading). 157, 2904–2911. https://doi.org/10.1099/mic.0.051102-0 (2011). Roberts, D. W. & Hajek, A. E. Entomopathogenic fungi as bioinsecticides. In Frontiers in Industrial Mycology 144–159 (Springer, 1992). St Leger, R. J. Biology and mechanisms of insect cuticle invation by Deuteromycete fungal pathogens. In Parasites and pathogens of insects (eds Beckage, N. E. et al.) 211–229 (Academic Press Inc, 1993). Behie, S. W. et al. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336, 1576–1577. https://doi.org/10.1126/science.1222289 (2012). Klironomos, J. N. & Hart, M. M. Food-web dynamics. Animal nitrogen swap for plant carbon. Nature 410, 651–652. https://doi.org/10.1038/35070643 (2001). Di Lelio, I. et al. A soil fungus confers plant resistance against a phytophagous insect by disrupting the symbiotic role of its gut microbiota. Proc. Natl. Acad. Sci. U S A. 120, e2216922120. https://doi.org/10.1073/pnas.2216922120 (2023). Monte, E. The sophisticated evolution of Trichoderma to control insect pests. Proc. Natl. Acad. Sci. U S A. 120, e2301971120. https://doi.org/10.1073/pnas.2301971120 (2023). Poveda, J. Trichoderma as biocontrol agent against pests: new uses for a mycoparasite. Biol. Control. 159, 104634. https://doi.org/10.1016/j.biocontrol.2021.104634 (2021). Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 5, 656. https://doi.org/10.3389/fmicb.2014.00656 (2014). Müller, A. et al. Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten Maximus (L). FEBS J. 274, 6329–6339. https://doi.org/10.1111/j.1742-4658.2007.06151.x (2007). Kong, D. et al. Fungus-derived opine enhances plant photosynthesis. J. Adv. Res. 75, 65–77. https://doi.org/10.1016/j.jare.2024.11.029 (2025). Chaverri, P. et al. Trichoderma amazonicum, a new endophytic species on Hevea Brasiliensis and H. guianensis from the Amazon basin. Mycologia 103, 139–151 (2011). Bandara, A. Y. et al. Soybean roots and soil from high- and low-yielding field sites have different Microbiome composition. Front. Microbiol. 12, 675352. https://doi.org/10.3389/fmicb.2021.675352 (2021). Ciancio, A. et al. Rhizosphere 16S-ITS metabarcoding profiles in banana crops are affected by nematodes, cultivation, and local Climatic variations. Front. Microbiol. 13, 855110. https://doi.org/10.3389/fmicb.2022.855110 (2022). Mandels, M. & Andreotti, R. Problems and challenges in the cellulose to cellulase fermentation. Proc. Biochem. 13, 6–13 (1978). Schuster, A. et al. A versatile toolkit for high throughput functional genomics with Trichoderma Reesei. Biotechnol. Biofuels. 5, 1. https://doi.org/10.1186/1754-6834-5-1 (2012). Tisch, D. et al. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma Reesei (Hypocrea jecorina). Fungal Genet. Biol. 48, 631–640. https://doi.org/10.1016/j.fgb.2010.12.009 (2011). Keel, B. N. & Snelling, W. M. Comparison of Burrows-Wheeler Transform-Based mapping algorithms used in High-Throughput Whole-Genome sequencing: application to illumina data for livestock genomes. Front. Genet. 9, 35. https://doi.org/10.3389/fgene.2018.00035 (2018). Bolger, A. M. et al. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014). Anders, S. et al. HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. https://doi.org/10.1093/bioinformatics/btu638 (2015). Li, H. et al. The sequence Alignment/Map format and samtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009). Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47. https://doi.org/10.1093/nar/gkv007 (2015). Law, C. W. et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29. https://doi.org/10.1186/gb-2014-15-2-r29 (2014). Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. https://doi.org/10.2202/1544-6115.1027 (2004). Seo, J. et al. An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics 22, 808–814. https://doi.org/10.1093/bioinformatics/btk052 (2006). Priebe, S. et al. FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics 31, 445–446. https://doi.org/10.1093/bioinformatics/btu627 (2015). Hinterdobler, W. et al. The role of PKAc1 in gene regulation and trichodimerol production in trichoderma Reesei. Fungal Biol. Biotechnol. 6, 12. https://doi.org/10.1186/s40694-019-0075-8 (2019). Pierron, R. et al. Deciphering the niches of colonisation of Vitis vinifera L. by the Esca-Associated fungus Phaeoacremonium aleophilum using a Gfp marked strain and cutting systems. PLoS One. 10, e0126851. https://doi.org/10.1371/journal.pone.0126851 (2015). Kumar, S. et al. MEGA7: molecular evolutionary eenetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016). Thompson, J. D. et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997). Yuan, L. et al. HGTphyloDetect: facilitating the identification and phylogenetic analysis of horizontal gene transfer. Brief. Bioinform https://doi.org/10.1093/bib/bbad035 (2023). Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017). Blin, K. et al. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35. https://doi.org/10.1093/nar/gkab335 (2021).

Rate this article

Login to rate this article

Comments

Please login to comment

No comments yet. Be the first to comment!
    Trichoderma Harzianum: Plant Recognition & Novel Metabolites