Friday, January 23, 2026
Health & Fitness
44 min read

How Blood Glucose Mediates SIRI's Link to Mortality in T2DM Stroke Patients

Nature
January 20, 20262 days ago
Blood glucose mediation of the association between SIRI and mortality in T2DM complicated with ischemic stroke

AI-Generated Summary
Auto-generated

This research investigates the relationship between blood glucose levels, the Systemic Immune-Inflammation Response Index (SIRI), and mortality in individuals with type 2 diabetes and ischemic stroke. Elevated SIRI and impaired glucose metabolism are linked to increased mortality risk, highlighting their significance as prognostic markers in this patient population.

Luger, S. et al. Beta adrenoceptor Blockade ameliorates impaired glucose tolerance and alterations of the cerebral ceramide metabolism in an experimental model of ischemic stroke. Ther. Adv. Neurol. Disord. 11, 1756286418769830. https://doi.org/10.1177/1756286418769830 (2018). Wang, X. et al. ApoA-I mimetic peptide reduces vascular and white matter damage after stroke in Type-2 diabetic mice. Front. Neurosci. 13, 1127. https://doi.org/10.3389/fnins.2019.01127 (2019). Yan, T. et al. Neurorestorative responses to delayed human mesenchymal stromal cells treatment of stroke in type 2 diabetic rats. Stroke 47, 2850–2858. https://doi.org/10.1161/strokeaha.116.014686 (2016). Venkat, P., Chopp, M. & Chen, J. Cell-Based and exosome therapy in diabetic stroke. Stem Cells Transl Med. 7, 451–455. https://doi.org/10.1002/sctm.18-0014 (2018). Kuts, R. et al. A novel method for assessing cerebral Edema, infarcted zone and Blood-Brain barrier breakdown in a single Post-stroke rodent brain. Front. Neurosci. 13, 1105. https://doi.org/10.3389/fnins.2019.01105 (2019). Li, Z. H. et al. Associations of plasma high-sensitivity C-reactive protein concentrations with all-cause and cause-specific mortality among middle-aged and elderly individuals. Immun. Ageing. 16, 28. https://doi.org/10.1186/s12979-019-0168-5 (2019). Huang, J. H., Tsai, L. C., Chang, Y. C. & Cheng, F. C. High or low calcium intake increases cardiovascular disease risks in older patients with type 2 diabetes. Cardiovasc. Diabetol. 13, 120. https://doi.org/10.1186/s12933-014-0120-0 (2014). Neumann, S. et al. The Delta-Subunit selective GABA (A) receptor Modulator, DS2, improves stroke recovery via an Anti-inflammatory mechanism. Front. Neurosci. 13, 1133. https://doi.org/10.3389/fnins.2019.01133 (2019). Li, L. et al. Oridonin prevents oxidative stress-induced endothelial injury via promoting Nrf-2 pathway in ischaemic stroke. J. Cell. Mol. Med. 25, 9753–9766. https://doi.org/10.1111/jcmm.16923 (2021). Liao, M. et al. High neutrophil counts before endovascular treatment for acute Basilar artery occlusion predict worse outcomes. Front. Aging Neurosci. 14, 978740. https://doi.org/10.3389/fnagi.2022.978740 (2022). Brait, V. H., Arumugam, T. V., Drummond, G. R. & Sobey, C. G. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J. Cereb. Blood Flow. Metab. 32, 598–611. https://doi.org/10.1038/jcbfm.2012.6 (2012). Bai, M., Sun, R., Cao, B., Feng, J. & Wang, J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci. Ther. 29, 3693–3712. https://doi.org/10.1111/cns.14368 (2023). Zhu, F., Ji, Y., Song, J. H., Huang, G. X. & Zhang, Y. F. Correlations between NLR, NHR, and clinicopathological characteristics, and prognosis of acute ischemic stroke. Med. (Baltim). 102, e33957. https://doi.org/10.1097/md.0000000000033957 (2023). Xu, C., Cai, L., Yi, T., Yi, X. & Hu, Y. Neutrophil-to-lymphocyte ratio is associated with stroke progression and functional outcome in patients with ischemic stroke. Brain Behav. 13, e3261. https://doi.org/10.1002/brb3.3261 (2023). Li, W. et al. Prognostic value of Neutrophil-to-Lymphocyte ratio in stroke: A systematic review and Meta-Analysis. Front. Neurol. 12, 686983. https://doi.org/10.3389/fneur.2021.686983 (2021). Wang, X. et al. Systemic inflammation response index is a promising prognostic marker in elderly patients with heart failure: A retrospective cohort study. Front. Cardiovasc. Med. 9, 871031. https://doi.org/10.3389/fcvm.2022.871031 (2022). Cheng, W. et al. Higher systemic immune-inflammation index and systemic inflammation response index levels are associated with stroke prevalence in the asthmatic population: a cross-sectional analysis of the NHANES 1999–2018. Front. Immunol. 14, 1191130. https://doi.org/10.3389/fimmu.2023.1191130 (2023). Lin, K. B. et al. Systemic immune inflammation index and system inflammation response index are potential biomarkers of atrial fibrillation among the patients presenting with ischemic stroke. Eur. J. Med. Res. 27, 106. https://doi.org/10.1186/s40001-022-00733-9 (2022). Lau, L. H., Lew, J., Borschmann, K., Thijs, V. & Ekinci, E. I. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J. Diabetes Investig. 10, 780–792. https://doi.org/10.1111/jdi.12932 (2019). Kaynak, N. et al. Impaired glucose metabolism and the risk of vascular events and mortality after ischemic stroke: A systematic review and meta-analysis. Cardiovasc. Diabetol. 23, 323. https://doi.org/10.1186/s12933-024-02413-w (2024). Tanaka, R. et al. Impact of diabetes and prediabetes on the short-term prognosis in patients with acute ischemic stroke. J. Neurol. Sci. 332, 45–50. https://doi.org/10.1016/j.jns.2013.06.010 (2013). Capes, S. E., Hunt, D., Malmberg, K., Pathak, P. & Gerstein, H. C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32, 2426–2432. https://doi.org/10.1161/hs1001.096194 (2001). Gu, L. et al. Systemic inflammatory response index (SIRI) is associated with all-cause mortality and cardiovascular mortality in population with chronic kidney disease: evidence from NHANES (2001–2018). Front. Immunol. 15, 1338025. https://doi.org/10.3389/fimmu.2024.1338025 (2024). Di Muro, F. M. et al. Prognostic impact of neutrophil-to-lymphocyte ratio in patients with and without diabetes mellitus undergoing percutaneous coronary intervention. Heart 111, 960–968. https://doi.org/10.1136/heartjnl-2024-325396 (2025). Wang, J., Zhou, D., Dai, Z. & Li, X. Association between systemic Immune-Inflammation index and diabetic depression. Clin. Interv Aging. 16, 97–105. https://doi.org/10.2147/cia.S285000 (2021). Zhang, Y., Yin, X., Liu, T., Ji, W. & Wang, G. Association between the stress hyperglycemia ratio and mortality in patients with acute ischemic stroke. Sci. Rep. 14, 20962. https://doi.org/10.1038/s41598-024-71778-5 (2024). Zhao, H. et al. Vespakinin-M, a natural peptide from Vespa magnifica, promotes functional recovery in stroke mice. Commun. Biol. 5, 74. https://doi.org/10.1038/s42003-022-03024-5 (2022). Lai, A. K. W. et al. Exacerbated VEGF up-regulation accompanies diabetes-aggravated hemorrhage in mice after experimental cerebral ischemia and delayed reperfusion. Neural Regen Res. 17, 1566–1575. https://doi.org/10.4103/1673-5374.330612 (2022). Resl, M. & Clodi, M. [Diabetes and cardiovascular complications]. Wien Med. Wochenschr. 160, 3–7. https://doi.org/10.1007/s10354-010-0744-y (2010). Chen, W., Huang, W., Yang, Y. & Li, K. Methylglyoxal Scavengers Attenuate Angiogenesis Dysfunction Induced by Methylglyoxal and Oxygen-Glucose Deprivation. Oxid. Med. Cell Longev. 2022, 8854457. https://doi.org/10.1155/2022/8854457 (2022). Weinberg Sibony, R., Segev, O., Dor, S. & Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes. 16, e70014. https://doi.org/10.1111/1753-0407.70014 (2024). Hwang, Z. A. et al. Intensity of arterial structure acquired by silent MRA estimates cerebral blood flow. Insights Imaging. 12, 185. https://doi.org/10.1186/s13244-021-01132-0 (2021). Kong, L. L. et al. Neutralization of chemokine-like factor 1, a novel C-C chemokine, protects against focal cerebral ischemia by inhibiting neutrophil infiltration via MAPK pathways in rats. J. Neuroinflammation. 11, 112. https://doi.org/10.1186/1742-2094-11-112 (2014). Yen, F. S., Wei, J. C., Chiu, L. T., Hsu, C. C. & Hwu, C. M. Diabetes, hypertension, and cardiovascular disease development. J. Transl Med. 20, 9. https://doi.org/10.1186/s12967-021-03217-2 (2022). Yao, H. W. & Kuan, C. Y. Early neutrophil infiltration is critical for inflammation-sensitized hypoxic-ischemic brain injury in newborns. J. Cereb. Blood Flow. Metab. 40, 2188–2200. https://doi.org/10.1177/0271678x19891839 (2020). Cui, L. L. et al. Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction. CNS Neurosci. Ther. 26, 829–836. https://doi.org/10.1111/cns.13381 (2020). Cai, W. et al. Functional dynamics of neutrophils after ischemic stroke. Transl Stroke Res. 11, 108–121. https://doi.org/10.1007/s12975-019-00694-y (2020). Zhang, W. B. et al. A high neutrophil-to-lymphocyte ratio predicts hemorrhagic transformation of large atherosclerotic infarction in patients with acute ischemic stroke. Aging (Albany NY). 12, 2428–2439. https://doi.org/10.18632/aging.102752 (2020). Greco, R. et al. CD163 as a Potential Biomarker of Monocyte Activation in Ischemic Stroke Patients. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22136712 (2021). Keeter, W. C., Moriarty, A. K. & Galkina, E. V. Role of neutrophils in type 2 diabetes and associated atherosclerosis. Int. J. Biochem. Cell. Biol. 141, 106098. https://doi.org/10.1016/j.biocel.2021.106098 (2021). Poznyak, A. et al. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21051835 (2020). Zhang, X., Kang, Z., Yin, D. & Gao, J. Role of neutrophils in different stages of atherosclerosis. Innate Immun. 29, 97–109. https://doi.org/10.1177/17534259231189195 (2023). Luo, J., Thomassen, J. Q., Nordestgaard, B. G., Tybjærg-Hansen, A. & Frikke-Schmidt, R. Neutrophil counts and cardiovascular disease. Eur. Heart J. 44, 4953–4964. https://doi.org/10.1093/eurheartj/ehad649 (2023). Jaipersad, A. S., Lip, G. Y., Silverman, S. & Shantsila, E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol. 63, 1–11. https://doi.org/10.1016/j.jacc.2013.09.019 (2014). Mehu, M., Narasimhulu, C. A. & Singla, D. K. Inflammatory Cells in Atherosclerosis. Antioxid. (Basel) https://doi.org/10.3390/antiox11020233 (2022). Mokgalaboni, K. et al. Monocyte-mediated inflammation and cardiovascular risk factors in type 2 diabetes mellitus: A systematic review and meta-analysis of pre-clinical and clinical studies. JRSM Cardiovasc. Dis. 9, 2048004019900748. https://doi.org/10.1177/2048004019900748 (2020). Kong, F. et al. System inflammation response index: a novel inflammatory indicator to predict all-cause and cardiovascular disease mortality in the obese population. Diabetol. Metab. Syndr. 15, 195. https://doi.org/10.1186/s13098-023-01178-8 (2023). Chen, X., Li, A. & Ma, Q. Neutrophil-lymphocyte ratio and systemic immune-inflammation index as predictors of cardiovascular risk and mortality in prediabetes and diabetes: a population-based study. Inflammopharmacology 32, 3213–3227. https://doi.org/10.1007/s10787-024-01559-z (2024). Jin, Z. et al. The associations of two novel inflammation Indexes, SII and SIRI with the risks for cardiovascular diseases and All-Cause mortality: A Ten-Year Follow-Up study in 85,154 individuals. J. Inflamm. Res. 14, 131–140. https://doi.org/10.2147/jir.S283835 (2021). Zhang, Y., Xing, Z., Zhou, K. & Jiang, S. The predictive role of systemic inflammation response index (SIRI) in the prognosis of stroke patients. Clin. Interv Aging. 16, 1997–2007. https://doi.org/10.2147/cia.S339221 (2021). Zhao, S. et al. Inflammation index SIRI is associated with increased all-cause and cardiovascular mortality among patients with hypertension. Front. Cardiovasc. Med. 9, 1066219. https://doi.org/10.3389/fcvm.2022.1066219 (2022). Bonnet, F. & Scheen, A. J. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 44, 457–464. https://doi.org/10.1016/j.diabet.2018.09.005 (2018). Narasimhan, P. B., Marcovecchio, P., Hamers, A. A. J. & Hedrick, C. C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol. 37, 439–456. https://doi.org/10.1146/annurev-immunol-042617-053119 (2019). Tahir, S. & Steffens, S. Nonclassical monocytes in cardiovascular physiology and disease. Am. J. Physiol. Cell. Physiol. 320, C761–c770. https://doi.org/10.1152/ajpcell.00326.2020 (2021). Hoes, L. L. F. et al. Relationship of neutrophil-to-lymphocyte ratio, in addition to C-reactive protein, with cardiovascular events in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 213, 111727. https://doi.org/10.1016/j.diabres.2024.111727 (2024). Kahraman, E., Cetin, S., Cetin, M. & Ulgen, A. Two sides of the coin: coagulation and inflammation in deep vein thrombosis - a prospective study on D-dimer and SIRI. Front. Med. (Lausanne). 12, 1604286. https://doi.org/10.3389/fmed.2025.1604286 (2025). Plebani, M. Why C-reactive protein is one of the most requested tests in clinical laboratories? Clin. Chem. Lab. Med. 61, 1540–1545. https://doi.org/10.1515/cclm-2023-0086 (2023). Chen, Y., Zhou, B., Peng, C., Liu, Y. & Lai, W. Prognostic implications of system inflammation response index in atrial fibrillation patients with type 2 diabetes mellitus. Sci. Rep. 15, 1025. https://doi.org/10.1038/s41598-024-84666-9 (2025). Mao, L. S. et al. Elevated systemic immune-inflammatory index predicts poor coronary collateralization in type 2 diabetic patients with chronic total occlusion. Front. Cardiovasc. Med. 11, 1490498. https://doi.org/10.3389/fcvm.2024.1490498 (2024). Cosma-Lăzuran, R., Leucuta, D. C. & Popoviciu, M. S. Systemic Immune-Inflammation Index and Related Hematologic Markers as Prognostic Tools in Type 2 Diabetes. Med. (Kaunas) https://doi.org/10.3390/medicina61081433 (2025). Zhang, J. et al. Association between inflammatory biomarkers and mortality in individuals with type 2 diabetes: NHANES 2005–2018. Diabetes Res. Clin. Pract. 209, 111575. https://doi.org/10.1016/j.diabres.2024.111575 (2024). Wang, S. et al. Association between Systemic Inflammation and Worsening Renal Function in Cardiovascular-Kidney-Metabolic Syndrome. Am. J. Nephrol. https://doi.org/10.1159/000546130 (2025). Kivrak, A. & Yildirim, A. Relationship between systemic inflammation indices and time of symptom onset in cardiac remodeling after first ST-segment elevation myocardial infarction. Kardiol Pol. 81, 886–894. https://doi.org/10.33963/KP.a2023.0150 (2023). Wu, J. et al. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur. J. Med. Chem. 262, 115912. https://doi.org/10.1016/j.ejmech.2023.115912 (2023). Bogush, M., Heldt, N. A. & Persidsky, Y. Blood brain barrier injury in diabetes: unrecognized effects on brain and cognition. J. Neuroimmune Pharmacol. 12, 593–601. https://doi.org/10.1007/s11481-017-9752-7 (2017). Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 18, 666–682. https://doi.org/10.1038/s41569-021-00552-1 (2021).

Rate this article

Login to rate this article

Comments

Please login to comment

No comments yet. Be the first to comment!
    SIRI & Mortality in T2DM Stroke: Blood Glucose Mediation