Space & Astronomy
29 min read
Nigella Sativa Extract Reverses Antibiotic Resistance in MRSA
Nature
January 18, 2026•4 days ago
AI-Generated SummaryAuto-generated
Nigella sativa extract was found to restore antimicrobial sensitivity in multidrug-resistant Staphylococcus aureus. The extract targets and removes plasmids, which carry antibiotic resistance genes. This approach offers a potential alternative strategy to combat antibiotic resistance in bacteria.
Aarestrup, F. M., Wegener, H. C. & Collignon, P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev. Anti-infective Therapy. 6, 733–750 (2008).
Malachowa, N. & DeLeo, F. R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).
Ammar, A. et al. Class 1 Integron-Associated multidrug resistance in some food borne pathogens. Zagazig Veterinary J. 42, 197–210 (2014).
Jensen, S. O. & Lyon, B. R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 4, 565–582 (2009).
Wall, B. A. et al. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production. (Food and Agriculture Organization of the United Nations, 2016).
Harnessing Plant Plasmid Curing Activity as an Alternative Approach to the Antibiotic Resistance Problem. IJARES 2. (2021).
Ammar, A. M., El-Naenaeey, E. S. Y., El-Hamid, A., El-Gedawy, M. I., Elmalt, R. & A. A. & Campylobacter as a major foodborne pathogen: A review of its characteristics, pathogenesis, antimicrobial resistance, and control. J. microb. biotech. Food sci. 10, 609–619 (2021).
Abd El-Hamid, M. I. & Bendary, M. M. Comparative phenotypic and genotypic discrimination of methicillin resistant and susceptible Staphylococcus aureus in Egypt. Cell. Mol. Biol. (Noisy-le-grand). 61, 101–112 (2015).
Litake, G. M. Plant-Assisted plasmid curing strategies for reversal of antibiotic resistance. In Antimicrobial Resistance (eds Kumar, V. et al.) 559–575 (Springer Nature Singapore, 2022). https://doi.org/10.1007/978-981-16-3120-7_18.
Kiran, K., Kaur, A. & Azmi, W. Annal. Phytomed. 10, 101 (2021).
Elmowalid, G. A. E. et al. Nigella sativa extract potentially inhibited methicillin resistant Staphylococcus aureus induced infection in rabbits: potential Immunomodulatory and growth promoting properties. Animals 12, 2635 (2022).
Abd El-Hamid, M. I. et al. Partnering essential oils with antibiotics: proven therapies against bovine Staphylococcus aureus mastitis. Front. Cell. Infect. Microbiol. 13, 1265027 (2023).
Kashi, M., Noei, M., Chegini, Z. & Shariati, A. Natural compounds in the fight against Staphylococcus aureus biofilms: a review of antibiofilm strategies. Front. Pharmacol. 15, 1491363 (2024).
SeyedAlinaghi, S. et al. A systematic review on natural products with antimicrobial potential against who’s priority pathogens. Eur. J. Med. Res. 30, 525 (2025).
Alhawas, B. et al. Curcumin loaded liposome formulation: enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in nile tilapia (Orechromis niloticus). Fish Shellfish Immunol. 138, 108776 (2023).
Barbarossa, A. et al. Antibiofilm effects of plant extracts against Staphylococcus aureus. Microorganisms 13, 454 (2025).
Ahmad, A. A. M., Gharib, A. A., Elshorbgy, I., Elewasy, O. A. & Elmowalid, G. A. Nigella sativa oil extract: A natural novel specific conjugal transfer inhibitor of Vancomycin resistance from vanA/B-resistant Enterococcus faecium to Staphylococcus aureus. J. Appl. Microbiol. 133, 619–629 (2022).
Abdel-Raheem, S. M. et al. Future scope of plant-derived bioactive compounds in the management of methicillin-resistant Staphylococcus aureus: in vitro antimicrobial and antivirulence prospects to combat MRSA. Microb. Pathog. 183, 106301 (2023).
Balyan, P., Akhter, J., Kumar, P. & Ali, A. Traditional and modern usage of Nigella sativa L. (Black cumin). AP 11, (2022).
Perera, W., Liyanage, J., Dissanayake, K., Chandrasiri, W. & Gunathilaka, H. A review on Pharmacological activities and anti-microbial properties of Nigella sativa and isolated thymoquinone. J. Med. Plants Stud. 9, 118–122 (2021).
Alberts, A., Moldoveanu, E. T., Niculescu, A. G. & Grumezescu, A. M. Nigella sativa: A comprehensive review of its therapeutic Potential, Pharmacological Properties, and clinical applications. IJMS 25, 13410 (2024).
Arooba Khalid & Syed Sohail Ahmad. Antibacterial activity of Nigella sativa against multi-drug resistant bacteria. Int. J. Pathol. 22, 45–95 (2024).
Emeka, L. B., Emeka, P. M. & Khan, T. M. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds. Pak J. Pharm. Sci. 28, 1985–1990 (2015).
Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K. & Bakhrouf, A. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med. 11, 29 (2011).
Goel, S. & Mishra, P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl. Microbiol. Biotechnol. 102, 1955–1967 (2018).
Khan, I. & Shaikh, J. D. Preliminary screening of phytoconstituents and antibacterial activity of Nigella sativa. Int. J. Curr. Microbiol. App Sci. 14, 32–40 (2025).
Attia, A., Abd El-Hamid, M. & El-Reheem, A. Abd El- Fattah, N. Impact of Nigella sativa and clove oils on cell wall genes expression in multidrug resistant Staphylococcus aureus. Zagazig Veterinary J. 44, 167–176 (2016).
Gonçalves, B. V. et al. Role of MurT C-Terminal domain in the amidation of Staphylococcus aureus peptidoglycan. Antimicrob. Agents Chemother. 63, e00957–e00919 (2019).
Navarre, W. W. & Schneewind, O. Surface proteins of Gram-Positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999).
Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of Gram-Positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).
Wang, X. et al. Application of CRISPR/Cas9 system for plasmid elimination and bacterial killing of Bacillus cereus group strains. Front. Microbiol. 12, 536357 (2021).
Shriram, V. et al. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. Int. J. Antimicrob. Agents. 32, 405–410 (2008).
Abbas, M. et al. Antimicrobial properties and therapeutic potential of bioactive compounds in Nigella sativa: A review. Molecules 29, 4914 (2024).
Uzair, B. et al. Synergism between Nigella sativa seeds extract and synthetic antibiotics against mec A gene positive human strains of Staphylococcus aureus. Int. J. Pharmacol. 13, 958–968 (2017).
Gruss, A. & Novick, R. Plasmid instability in regenerating protoplasts of Staphylococcus aureus is caused by aberrant cell division. J. Bacteriol. 165, 878–883 (1986).
Neyaz, L., Rajagopal, N., Wells, H. & Fakhr, M. K. Molecular characterization of Staphylococcus aureus plasmids associated with strains isolated from various retail meats. Front. Microbiol. 11, 223 (2020).
Udo, E. E., Jacob, L. E. & Mathew, B. Genetic analysis of methicillin-resistant Staphylococcus aureus expressing high- and low-level mupirocin resistance. J. Med. Microbiol. 50, 909–915 (2001).
Atalla, H. et al. Characterization of a Staphylococcus aureus small colony variant (SCV) associated with persistent bovine mastitis. Foodborne Pathog. Dis. 5, 785–799 (2008).
Latha, C., Shriram, V. D., Jahagirdar, S. S., Dhakephalkar, P. K. & Rojatkar, S. R. Antiplasmid activity of 1′-acetoxychavicol acetate from Alpinia Galanga against multi-drug resistant bacteria. J. Ethnopharmacol. 123, 522–525 (2009).
Abdalla-Galal, S. & Ramuz, M. Schmitt-Slomska, j. Plasmid curing in Staphylococcus aureus by antibiotics affecting the bacterial cell wall. FEMS Microbiol. Lett. 49, 367–370 (1988).
Watanakunakorn, C. Infect. Immun 3, 709–710 (1971).
Wang, Y., Batra, A., Schulenburg, H. & Dagan, T. Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. Phil Trans. R Soc. B. 377, 20200467 (2022).
Alkharfy, K. M., Ahmad, A., Khan, R. M. A. & Al-Shagha, W. M. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur. J. Drug Metab. Pharmacokinet. 40, 319–323 (2015).
Ahmad, A. A. M. et al. Thymoquinone’ potent impairment of multidrug-resistant Staphylococcus aureus NorA efflux pump activity. Sci. Rep. 14, 16483 (2024).
Chen, B. C., Chen, Y. Z. & Lin, H. Y. An introduced RNA-Only approach for plasmid curing via the CRISPR-Cpf1 system in Saccharomyces cerevisiae. Biomolecules 13, 1561 (2023).
Kumar, P., Mohanan, A. G. & Ak, A. K. Homology Modelling, phylogenetic Analysis, and molecular Docking of glutamine Aminotransferase, GatD from clostridium botulinum. IGJPS 10, 46–57 (2020).
Orr, A. L. et al. Novel inhibitors of mitochondrial sn-Glycerol 3-phosphate dehydrogenase. PLoS ONE. 9, e89938 (2014).
Kumari, T. & Sinha, R. A. Review on plasmid curing in bacterial systems. Int. J. Res. Publ Rev. 4, 4602–4609 (2023).
Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran Sulfate Sodium (DSS)‐Induced Colitis in Mice. CP Immunology 104, 15 (2014).
Jorgensen, J. H. et al. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. Manual of Clinical Micro biology. 11th Edition eds Jorgensen, J. H. 1253–1273 (American Society of Microbiology, 2015).
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow aerobically, Approved standard, CLSI Document M100. 30th edn. (Clinical and Laboratory Standards Institute, 2018).
Maniatis, T. In: Molecular Cloning - A Laboratory Manual. (Maniatis, T., Fritsch, E. F. and Sambrook, J., Eds.). 31, 159–172 (1982).
Rate this article
Login to rate this article
Comments
Please login to comment
No comments yet. Be the first to comment!
