Thursday, January 22, 2026
Space & Astronomy
34 min read

Natural Hydrogen Flow Rates & Their Impact on Production Viability

Nature
January 21, 20261 day ago
The relationship between natural hydrogen flow rates and production viability

AI-Generated Summary
Auto-generated

Natural hydrogen exploration is gaining traction as a potential carbon-free energy source. Recent research highlights the importance of understanding flow rates and accumulation processes in continental crust. Studies of sites in Mali and Brazil demonstrate promising reservoirs, suggesting natural hydrogen can compete with hydrocarbons. Further exploration tools and workflows are being developed to characterize these plays.

Ballentine, C. J. et al. Natural hydrogen resource accumulation in the continental crust. Nat. Reviews Earth Environ. 6, 342–356. https://doi.org/10.1038/s43017-025-00670-1 (2025). Ball, P. J. & Czado, K. Natural hydrogen: the race to discovery and concept demonstration. GEOscientist Spring 2024 (2024). Prinzhofer, A., Rigollet, C., Lefeuvre, N., Françolin, J. & de Valadão, P. E. Maricá (Brazil), the new natural hydrogen play which changes the paradigm of hydrogen exploration. Int. J. Hydrog. Energy. 62, 91–98. https://doi.org/10.1016/j.ijhydene.2024.02.263 (2024). Maiga, O., Deville, E., Laval, J., Prinzhofer, A. & Diallo, A. B. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali. Sci. Rep. 13, 11876. https://doi.org/10.1038/s41598-023-38977-y (2023). Rigollet, C., Prinzhofer, A. & Natural Hydrogen A new source of Carbon-Free and renewable energy that can compete with hydrocarbons. First Break. 40, 78–84. https://doi.org/10.3997/1365-2397.fb2022087 (2022). Lévy, D. et al. Natural H2 exploration: tools and workflows to characterize a play. Sci. Tech. Energ. Transition. 78, 27. https://doi.org/10.2516/stet/2023021 (2023). Jackson, O. et al. Natural hydrogen: sources, systems and exploration plays. Geoenergy https://doi.org/10.1144/geoenergy2024-002 (2024). Milkov, A. V. Molecular hydrogen in surface and subsurface natural gases: Abundance, origins and ideas for deliberate exploration. Earth Sci. Rev. 230, 104063. https://doi.org/10.1016/j.earscirev.2022.104063 (2022). Sherwood Lollar, B. S., Onstott, T. C., Lacrampe-Couloume, G. & Ballentine, C. J. The contribution of the precambrian continental lithosphere to global H2 production. Nature 516, 379–382. https://doi.org/10.1038/nature14017 (2014). Truche, L., McCollom, T. M. & Martinez, I. Hydrogen and abiotic hydrocarbons: molecules that change the world. Elements 16, 13–18. https://doi.org/10.2138/gselements.16.1.13 (2020). Klein, F., Tarnas, J. D. & Bach, W. Abiotic sources of molecular hydrogen on Earth. Elements 16, 19–24. https://doi.org/10.2138/gselements.16.1.19 (2020). Etiope, G. & Sherwood Lollar, B. Abiotic methane on earth. Rev. Geophys. 51, 276–299. https://doi.org/10.1002/rog.20011 (2013). Warr, O., Giunta, T., Ballentine, C. J. & Sherwood Lollar, B. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in precambrian shield environments. Chem. Geol. 530, 119322. j.chemgeo.2019.119322 (2019). Mao, S. et al. Geologic hydrogen: a review of resource potential, subsurface dynamics, exploration, production, transportation, and research opportunities. Energy Environ. Sci. https://doi.org/10.1039/D5EE02910D (2025). Maiga, O., Deville, E., Laval, J., Prinzhofer, A. & Diallo, A. B. Trapping processes of large volumes of natural hydrogen in the subsurface: the emblematic case of the Bourakebougou H2 field in Mali. Int. J. Hydrog. Energy. https://doi.org/10.1016/j.ijhydene.2023.10.131 (2023). Musa, M. et al. Techno-economic assessment of natural hydrogen produced from subsurface geologic accumulations. Int. J. Hydrog. Energy. 93, 1283–1294. https://doi.org/10.1016/j.ijhydene.2024.11.009 (2024). Mathur, Y., Moise, H., Aydın, Y. & Mukerji, T. Techno-economic analysis of natural and stimulated geological hydrogen. Int. J. Hydrog. Energy. 165, 150872. https://doi.org/10.1016/j.ijhydene.2025.150872 (2025). Aquino, K. A. et al. High hydrogen outgassing from an ophiolite-hosted seep in Zambales, Philippines. Int. J. Hydrog. Energy. 105, 360–366. https://doi.org/10.1016/j.ijhydene.2025.01.251 (2025). Boreham, C. J. et al. Hydrogen in Australian natural gas: occurrences, sources and resources. APPEA J. 61, 163–191. https://doi.org/10.1071/AJ20044 (2021). Etiope, G. Massive release of natural hydrogen from a geological seep (Chimaera, Turkey): gas advection as a proxy of subsurface gas migration and pressurised accumulations. Int. J. Hydrog. Energy. 48, 9172–9184. https://doi.org/10.1016/j.ijhydene.2022.12.025 (2023). Larin, N. et al. Natural molecular hydrogen seepage associated with Surficial, rounded depressions on the European craton in Russia. Nat. Resour. Res. 24, 369–383. https://doi.org/10.1007/s11053-014-9257-5 (2015). Lefeuvre, N. et al. Natural hydrogen migration along thrust faults in foothill basins: the North pyrenean frontal thrust case study. Appl. Geochem. 145, 105396. https://doi.org/10.1016/j.apgeochem.2022.105396 (2022). Leong, J. A. et al. H2 and CH4 outgassing rates in the Samail ophiolite, oman: implications for low-temperature, continental serpentinization rates. Geochim. Cosmochim. Acta. 347, 1–15. https://doi.org/10.1016/j.gca.2023.02.008 (2023). Moretti, I. et al. Long-term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. Int. J. Hydrog. Energy. 46, 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026 (2021). Neal, C. & Stanger, G. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 66, 315–320. https://doi.org/10.1016/0012-821X(83)90144-9 (1983). Prinzhofer, A. et al. Natural hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting structure. Int. J. Hydrog. Energy. 44, 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119 (2019). Rogers, G. S. Helium-Bearing Natural Gas (USGS, 1921). Sherwood, B. et al. Methane occurrences in the Canadian shield. Chem. Geol. 71, 223–236. https://doi.org/10.1016/0009-2541(88)90117-9 (1988). Smith, N. J. P., Shepherd, T. J., Styles, M. T. & Williams, G. M. Petroleum geology: north-west Europe and global perspectives: proceedings of the 6th Petroleum Geology Conference. (eds A.G. Dore & B.A. Vining) 349–358 (Geological Society of London). Truche, L. et al. A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite. Science 383, 618–621. https://doi.org/10.1126/science.adk9099 (2024). Zgonnik, V. et al. Evidence for natural molecular hydrogen seepage associated with Carolina Bays (surficial, ovoid depressions on the Atlantic coastal Plain, Province of the USA). Progress Earth Planet. Sci. 2, 31. https://doi.org/10.1186/s40645-015-0062-5 (2015). Zgonnik, V., Beaumont, V., Larin, N., Pillot, D. & Deville, E. Diffused flow of molecular hydrogen through the Western Hajar mountains, Northern Oman. Arab. J. Geosci. 12, 71. https://doi.org/10.1007/s12517-019-4242-2 (2019). Zgonnik, V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth Sci. Rev. 203, 103140. https://doi.org/10.1016/j.earscirev.2020.103140 (2020). Everts, A. J. W., Bonnie, J. & Loosveld, R. Natural hydrogen development-potential and challenges. Int. J. Hydrog. Energy. 142, 26–39. https://doi.org/10.1016/j.ijhydene.2025.05.357 (2025). Burnham, A. et al. Life-Cycle greenhouse gas emissions of shale gas, natural gas, Coal, and petroleum. Environ. Sci. Technol. 46, 619–627. https://doi.org/10.1021/es201942m (2012). U.S. Energy Information Administration (EIA). Drilling Productivity Report (2024). Landesamt für Bergbau Energie und Geologie (LBEG). Erdöl Und Erdgas in Der Bundesrepublik Deutschland 2024 (LBEG, 2025). QuatarenergyLng. Offshore. (accessed 24 July 2025). https://www.qatarenergylng.qa/english/operations/offshore. U.S. Department of Energy (DOI). (ed U.S. Department of Energy (DOI)) (2022). Templeton, A. S. et al. Low-temperature hydrogen production and consumption in partially-hydrated peridotites in Oman: implications for stimulated geological hydrogen production. Front. Geochem. https://doi.org/10.3389/fgeoc.2024.1366268 (2024). Ellis, G. S. & Gelman, S. E. Model predictions of global geologic hydrogen resources. Sci. Adv. 10, eado0955. https://doi.org/10.1126/sciadv.ado0955 (2024). The Royal Society. Natural hydrogen: future energy and resources (2025). Mahlstedt, N. et al. Molecular hydrogen from organic sources in geological systems. J. Nat. Gas Sci. Eng. 105, 104704. https://doi.org/10.1016/j.jngse.2022.104704 (2022). Li, X., Krooss, B. M., Weniger, P. & Littke, R. Liberation of molecular hydrogen (H2) and methane (CH4) during non-isothermal pyrolysis of shales and coals: systematics and quantification. Int. J. Coal Geol. 137, 152–164. https://doi.org/10.1016/j.coal.2014.11.011 (2015). C Gaucher, E. New perspectives in the industrial exploration for native hydrogen. Elements 16, 8–9. https://doi.org/10.2138/gselements.16.1.8 (2020). Li, X., Krooss, B. M., Ostertag-Henning, C., Weniger, P. & Littke, R. Liberation of hydrogen-containing gases during closed system pyrolysis of immature organic matter-rich shales. Int. J. Coal Geol. 185, 23–32. https://doi.org/10.1016/j.coal.2017.11.001 (2018). Horsfield, B. et al. Organic H2 formation at atomic to basin scales: predictions and ground-truthing. Int. J. Hydrog. Energy https://doi.org/10.1016/j.ijhydene.2025.150063 (2025). Klemme, H. D. The Petroleum System—From Source to Trap Vol. AAPG Memoir 60 (eds L. B. Magoon & W. G. Dow) 51–72 (1994). Rodrigues Duran, E., di Primio, R., Anka, Z., Stoddart, D. & Horsfield, B. 3D-basin modelling of the hammerfest basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Mar. Pet. Geol. 45, 281–303. https://doi.org/10.1016/j.marpetgeo.2013.04.023 (2013). Lapi, T., Chatzimpiros, P., Raineau, L. & Prinzhofer, A. System approach to natural versus manufactured hydrogen: an interdisciplinary perspective on a new primary energy source. Int. J. Hydrog. Energy. 47, 21701–21712. https://doi.org/10.1016/j.ijhydene.2022.05.039 (2022). Lin, L. H., Slater, G. F., Lollar, S., Lacrampe-Couloume, B., Onstott, T. C. & G. & The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta. 69, 893–903. https://doi.org/10.1016/j.gca.2004.07.032 (2005). Klein, F., Bach, W. & McCollom, T. M. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178, 55–69. https://doi.org/10.1016/j.lithos.2013.03.008 (2013). McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta. 73, 856–875. https://doi.org/10.1016/j.gca.2008.10.032 (2009). Prinzhofer, A. & Cacas-Stentz, M. C. Natural hydrogen and blend gas: a dynamic model of accumulation. Int. J. Hydrog. Energy. https://doi.org/10.1016/j.ijhydene.2023.03.060 (2023). Truche, L. et al. A dynamic H2 system with multi-source methane in chromitite-rich ophiolitic settings. Geochim. Cosmochim. Acta. 409, 281–307. https://doi.org/10.1016/j.gca.2025.09.039 (2025). Energy Sector Planning and Analysis (ESPA). Life Cycle Analysis of Natural Gas Extraction and Power Generation. (This report was prepared by Energy Sector Planning and Analysis (ESPA) for the United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). This work was completed under DOE NETL Contract Number DE-FE0004001. This work was performed under ESPA Tasks 150.02 and 150.08 (2014).

Rate this article

Login to rate this article

Comments

Please login to comment

No comments yet. Be the first to comment!