Space & Astronomy
37 min read
Uncovering Structural Variants in Cattle: Molecular QTL Insights
Nature
January 21, 2026•1 day ago
AI-Generated SummaryAuto-generated
A cattle long-read cohort analysis revealed that molecular quantitative trait loci (mQTL) are enriched for structural variants (SVs). This study, using extensive sequencing data, identified significant associations between SVs and gene expression, impacting traits in cattle. The findings highlight the crucial role of SVs in genetic variation and their influence on phenotypic diversity.
Daetwyler, H. D. et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865 (2014).
McVean, G. A. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
Abecasis, G. R., Cherny, S. S. & Cardon, L. R. The impact of genotyping error on family-based analysis of quantitative traits. Eur. J. Hum. Genet. 9, 130–134 (2001).
Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).
Hu, Z.-L., Park, C. A. & Reecy, J. M. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res. 50, D956–D961 (2022).
Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 50, 1593–1599 (2018).
Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).
Cameron, D. L., Di Stefano, L. & Papenfuss, A. T. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nat. Commun. 10, 3240 (2019).
Huddleston, J. et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27, 677–685 (2017).
Kosugi, S. & Terao, C. Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data. Hum. Genome Var. 11, 18 (2024).
Ahsan, M. U., Liu, Q., Perdomo, J. E., Fang, L. & Wang, K. A survey of algorithms for the detection of genomic structural variants from long-read sequencing data. Nat. Methods 20, 1143–1158 (2023).
Mikheyev, A. S. & Tin, M. M. Y. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097–1102 (2014).
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
Alonge, M. et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145–161.e23 (2020).
Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat. Genet. 53, 779–786 (2021).
Schloissnig, S. et al. Structural variation in 1,019 diverse humans based on long-read sequencing. Nature 644, 442–452 (2025).
Duan, X., Pan, M. & Fan, S. Comprehensive evaluation of structural variant genotyping methods based on long-read sequencing data. BMC Genom. 23, 324 (2022).
Yang, Q. et al. SVLearn: a dual-reference machine learning approach enables accurate cross-species genotyping of structural variants. Nat. Commun. 16, 2406 (2025).
Kalleberg, J., Rissman, J. & Schnabel, R. D. Overcoming limitations to customize DeepVariant for domesticated animals with TrioTrain. Genome Res. 35, 1859–1874 (2025).
Lloret-Villas, A., Bhati, M., Kadri, N. K., Fries, R. & Pausch, H. Investigating the impact of reference assembly choice on genomic analyses in a cattle breed. BMC Genom. 22, 363 (2021).
Leonard, A. S. et al. Structural variant-based pangenome construction has low sensitivity to variability of haplotype-resolved bovine assemblies. Nat. Commun. 13, 3012 (2022).
Leonard, A. S., Crysnanto, D., Mapel, X. M., Bhati, M. & Pausch, H. Graph construction method impacts variation representation and analyses in a bovine super-pangenome. Genome Biol. 24, 124 (2023).
Talenti, A. et al. A cattle graph genome incorporating global breed diversity. Nat. Commun. 13, 910 (2022).
Bhati, M., Mapel, X. M., Lloret-Villas, A. & Pausch, H. Structural variants and short tandem repeats impact gene expression and splicing in bovine testis tissue. Genetics 225, iyad161 (2023).
Lee, Y.-L. et al. High-resolution structural variants catalogue in a large-scale whole genome sequenced bovine family cohort data. BMC Genom. 24, 225 (2023).
Grant, J. R. et al. A large structural variant collection in Holstein cattle and associated database for variant discovery, characterization, and application. BMC Genom. 25, 903 (2024).
Lee, Y.-L. et al. A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genet. 17, e1009331 (2021).
Trigo, B. B. et al. Variants at the ASIP locus contribute to coat color darkening in Nellore cattle. Genet. Sel. Evol. 53, 40 (2021).
Rothammer, S. et al. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet. Sel. Evol. 46, 44 (2014).
Milia, S. et al. Taurine pangenome uncovers a segmental duplication upstream of KIT associated with depigmentation in white-headed cattle. Genome Res. 35, 1041–1052 (2025).
Durkin, K. et al. Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature 482, 81–84 (2012).
Küttel, L. et al. A complex structural variant at the KIT locus in cattle with the Pinzgauer spotting pattern. Anim. Genet. 50, 423–429 (2019).
Kadri, N. K. et al. A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in nordic red cattle: additional evidence for the common occurrence of balancing selection in livestock. PLoS Genet. 10, e1004049 (2014).
Venhoranta, H. et al. Ectopic KIT copy number variation underlies impaired migration of primordial germ cells associated with gonadal hypoplasia in cattle (Bos taurus). PLoS ONE 8, e75659 (2013).
Mapel, X. M. et al. Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle. Nat. Commun. 15, 674 (2024).
Leonard, A. S., Mapel, X. M. & Pausch, H. Pangenome genotyped structural variation improves molecular phenotype mapping in cattle. Genome Res. 34, 300–309 (2024).
Olagunju, T. A. et al. Telomere-to-telomere assemblies of cattle and sheep Y-chromosomes uncover divergent structure and gene content. Nat. Commun. 15, 8277 (2024).
Crysnanto, D., Wurmser, C. & Pausch, H. Accurate sequence variant genotyping in cattle using variation-aware genome graphs. Genet. Sel. Evol. 51, 21 (2019).
Jansen, S. et al. Assessment of the genomic variation in a cattle population by re-sequencing of key animals at low to medium coverage. BMC Genom. 14, 446 (2013).
English, A. C., Cunial, F., Metcalf, G. A., Gibbs, R. A. & Sedlazeck, F. J. K-mer analysis of long-read alignment pileups for structural variant genotyping. Nat. Commun. 16, 3218 (2025).
Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).
Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).
Scott, A. J., Chiang, C. & Hall, I. M. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res. 31, 2249–2257 (2021).
Zhang, Y. et al. Structural variation reshapes population gene expression and trait variation in 2,105 Brassica napus accessions. Nat. Genet. 56, 2538–2550 (2024).
Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).
Billingsley, K. J. et al. Long-read sequencing of hundreds of diverse brains provides insight into the impact of structural variation on gene expression and DNA methylation. bioRxiv https://doi.org/10.1101/2024.12.16.628723 (2024).
Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499 (2010).
Huang, L., Wang, C. & Rosenberg, N. A. The relationship between imputation error and statistical power in genetic association studies in diverse populations. Am. J. Hum. Genet. 85, 692–698 (2009).
Noyvert, B. et al. Imputation of structural variants using a multi-ancestry long-read sequencing panel enables identification of disease associations. eLife 14, RP106115 (2025).
Gong, J. et al. Long-read sequencing of 945 Han individuals identifies structural variants associated with phenotypic diversity and disease susceptibility. Nat. Commun. 16, 1494 (2025).
Garimella, K. V. et al. Population-scale long-read sequencing in the all of us research program. medRxiv 2025.10.02.25336942 Preprint at https://doi.org/10.1101/2025.10.02.25336942 (2025).
Tang, L. et al. GWAS reveals determinants of mobilization rate and dynamics of an active endogenous retrovirus of cattle. Nat. Commun. 15, 2154 (2024).
Adelson, D. L., Raison, J. M. & Edgar, R. C. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proc. Natl. Acad. Sci. USA 106, 12855–12860 (2009).
Cui, Y. et al. Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain. Nat. Genet. 57, 369–378 (2025).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at http://arxiv.org/abs/1303.3997 (2013).
Vasimuddin, Md., Misra, S., Li, H. & Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. in Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, 2019).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Yun, T. et al. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. Bioinformatics 36, 5582–5589 (2021).
Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparison and analysis. Nat. Methods 20, 408–417 (2023).
Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).
Cotto, K. C. et al. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat. Commun. 14, 1589 (2023).
Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).
Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nat. Commun. 8, 15452 (2017).
Zhou, H. J., Li, L., Li, Y., Li, W. & Li, J. J. PCA outperforms popular hidden variable inference methods for molecular QTL mapping. Genome Biol. 23, 210 (2022).
Salavati, M. et al. Improving the annotation of the cattle genome by annotating transcription start sites in a diverse set of tissues and populations using Cap Analysis Gene Expression sequencing. G3 13, jkad108 (2023).
Karolchik, D. et al. The UCSC genome browser database. Nucleic Acids Res. 31, 51–54 (2003).
Pausch, H., Mapel, X. & Leonard, A. A bovine long read cohort to identify SVs and quantify their impact on gene expression [Data set]. Zenodo https://doi.org/10.5281/zenodo.17338532 (2025).
Rate this article
Login to rate this article
Comments
Please login to comment
No comments yet. Be the first to comment!
