Breaking News
27 min read
Understanding Melanin's PCR Inhibition and NanoPCR Solutions
Nature
January 22, 2026•4 hours ago
AI-Generated SummaryAuto-generated
Melanin's inhibitory effect on polymerase chain reaction (PCR) was investigated. Melanin reversibly binds to DNA polymerase, hindering its activity. A novel NanoPCR-based method was developed to effectively mitigate this inhibition, enabling successful DNA amplification even in the presence of melanin.
Mullis, K. B. The unusual origin of the polymerase chain reaction. Sci. Am. 262(4), 56–65 (1990).
Galluzzi, L. et al. Real-time PCR applications for diagnosis of leishmaniasis. Parasit. Vectors 11, 1–13 (2018).
Matsuda, K. PCR-based detection methods for single-nucleotide polymorphism or mutation: Real-time PCR and its substantial contribution toward technological refinement. Adv. Clin. Chem. 80, 45–72 (2017).
Serrano-Cumplido, A. et al. Application of the PCR number of cycle threshold value (Ct) in COVID-19. SEMERGEN 47(5), 337–341 (2021).
Shahi, S. et al. Polymerase chain reaction (PCR)-based methods: Promising molecular tools in dentistry. Int. J. Biol. Macromol. 117, 983–992 (2018).
Mirmajlessi, S. M. et al. Real-time PCR applied to study on plant pathogens: Potential applications in diagnosis-a review. Plant Prot. Sci. 51(4), 177–190 (2015).
Petralia, S. & Conoci, S. PCR technologies for point of care testing: Progress and perspectives. ACS Sen. 2(7), 876–891 (2017).
McDonald, C., Taylor, D. & Linacre, A. PCR in forensic science: A critical review. Genes 15(4), 438 (2024).
Weusten, J. & Herbergs, J. A stochastic model of the processes in PCR based amplification of STR DNA in forensic applications. Forensic Sci. Int. Genet. 6(1), 17–25 (2012).
Zhu, H. et al. PCR past, present and future. Biotechniques 69(4), 317–325 (2020).
Singh, J. et al. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci. 1(7), 65–80 (2014).
Vajpayee, K. et al. PCR inhibitors and facilitators-their role in forensic DNA analysis. Forensic Sci. Int. 349, 111773 (2023).
Herrling, T., Jung, K. & Fuchs, J. The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 69(5), 1429–1435 (2008).
Guo, L. et al. Recent advances and progress on melanin: From source to application. Int. J. Mol. Sci. 24(5), 4360 (2023).
Bashkatov, A. N. et al. Estimate of the melanin content in human hairs by the inverse Monte-Carlo method using a system for digital image analysis. Quantum Electron. 36(12), 1111 (2006).
Santos Nogueira, A. C. & Joekes, I. Hair color changes and protein damage caused by ultraviolet radiation. J. Photochem. Photobiol. B Biol. 74(2), 109–117 (2004).
Cordero, R. J. & Casadevall, A. Melanin. Curr. Biol. 30(4), R142–R143 (2020).
Eckhart, L. et al. Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem. Biophys. Res. Commun. 271(3), 726–730 (2000).
Suenaga, E. & Nakamura, H. Evaluation of three methods for effective extraction of DNA from human hair. J. Chromatogr. B 820(1), 137–141 (2005).
Yoshii, T. et al. Water-soluble eumelanin as a PCR-inhibitor and a simple method for its removal. Nihon Hoigaku Zasshi 47(4), 323–329 (1993).
Thompson, R. E., Duncan, G. & McCord, B. R. An investigation of PCR inhibition using Plexor(®) -based quantitative PCR and short tandem repeat amplification. J. Forensic Sci 59(6), 1517–1529 (2014).
Silva Almeida Vicente, A. L. et al. Comparison of protocols for removal of melanin from genomic DNA to optimize PCR amplification of DNA purified from highly pigmented lesions. Histol. Histopathol. 34(9), 1089–1096 (2019).
Yoshii, T. et al. PCR inhibitor: Water-soluble melanin, which inhibits DNA polymerases and DNases. In Advances in Forensic Haemogenetics: 15th Congress of the International Society for Forensic Haemogenetics (Internationale Gesellschaft für forensische Hämogenetik eV), Venezia, 13–15 October 1993. Springer (1994).
Alaeddini, R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 6(3), 297–305 (2012).
Sarna, T., Swartz, H. M. & Zadlo, A. Interaction of melanin with metal ions modulates their cytotoxic potential. Appl. Magn. Reson. 53(1), 105–121 (2022).
Solano, F. Melanins: Skin pigments and much more—types, structural models, biological functions, and formation routes. New J. Sci. 2014(1), 498276 (2014).
Vajpayee, K., Sagar, D. & Dash, H. R. Forensic DNA typing: Inception, methodology, and technical advancements. In Forensic DNA typing: Principles, applications and advancements 3–26 (Springer, 2020).
Wang, H. et al. A re-evaluation of dilution for eliminating PCR inhibition in soil DNA samples. Soil Biol. Biochem. 106, 109–118 (2017).
Kreader, C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62(3), 1102–1106 (1996).
Farell, E. M. & Alexandre, G. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC. Res. Notes 5(1), 1–8 (2012).
Schriewer, A., Wehlmann, A. & Wuertz, S. Improving qPCR efficiency in environmental samples by selective removal of humic acids with DAX-8. J. Microbiol. Methods 85(1), 16–21 (2011).
Hamza, I. A. & Leifels, M. Assessment of PCR inhibitor removal methods to monitor viruses in environmental water samples: DAX-8 outperforms competitors. Water Air Soil Pollut. 235(1), 20 (2023).
Zhang, Y. et al. Bovine thrombin enhances the efficiency and specificity of polymerase chain reaction. Biotechniques 57(6), 289–294 (2014).
Strien, J., Sanft, J. & Mall, G. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences. Mol. Biotechnol. 54(3), 1048–1054 (2013).
Vajpayee, K., Paida, V. & Shukla, R. K. Nanoparticle-assisted PCR: Fundamentals, mechanisms, and forensic implications. Int. J. Legal Med. 139(3), 945–964 (2025).
Tiwari, P. M. et al. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1), 31–63 (2011).
Li, Y. et al. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates. Protein Sci. 7(5), 1116–1123 (1998).
Eom, S. H., Wang, J. & Steitz, T. A. Structure of Taq polymerase with DNA at the polymerase active site. Nature 382(6588), 278–281 (1996).
Shi, X. et al. Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chin. Sci. Bull. 57(10), 1109–1115 (2012).
Rossen, L. et al. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 17(1), 37–45 (1992).
Schrader, C. et al. PCR inhibitors–occurrence, properties and removal. J. Appl. Microbiol. 113(5), 1014–1026 (2012).
Sidstedt, M. et al. The impact of common PCR inhibitors on forensic MPS analysis. Forensic Sci. Int. Genet. 40, 182–191 (2019).
McCord, B., Pionzio, A. & Thompson, R. Analysis of the effect of a variety of PCR inhibitors on the amplification of DNA using real time PCR, melt curves and STR analysis. The U.S. Department of Justice, Washington DC, Document No. 249148 (2014).
Roskoski, R. Modulation of enzyme activity. In xPharm: The comprehensive pharmacology reference (eds Enna, S. J. & Bylund, D. B.) 1–11 (Elsevier, 2007).
Funes-Huacca, M. E. et al. A comparison of the effects of PCR inhibition in quantitative PCR and forensic STR analysis. Electrophoresis 32(9), 1084–1089 (2011).
Sidstedt, M. et al. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction. Anal. Biochem. 487, 30–37 (2015).
Dash, H. R. et al. Useful autosomal STR marker sets for forensic and paternity applications in the Central Indian population. Ann. Hum. Biol. 48(1), 37–48 (2021).
Kumar, A. et al. Genomic diversity at 22 STR loci (extended CODIS STR) in the population of Rajasthan, India. Gene Rep. 23, 101150 (2021).
Glock, B. et al. Additional variability at the D12S391 STR locus in an Austrian population sample: Sequencing data and allele distribution. Forensic Sci. Int. 90(3), 197–203 (1997).
Biedermann, A. & Kotsoglou, K. N. Forensic science and the principle of excluded middle: “Inconclusive” decisions and the structure of error rate studies. Forensic Sci. Int. Synergy 3, 100147 (2021).
Giambernardi, T. A., Rodeck, U. & Klebe, R. J. Bovine serum albumin reverses inhibition of RT-PCR by melanin. Biotechniques 25(4), 564–566 (1998).
Hu, Q. et al. A comparison of four methods for PCR inhibitor removal. Forensic Sci. Int. Genet. 16, 94–97 (2015).
NedumpullyGovindan, P., Monticelli, L. & Salonen, E. Mechanism of taq DNA polymerase inhibition by fullerene derivatives: Insight from computer simulations. J. Phys. Chem. B 116(35), 10676–10683 (2012).
Lu, C. et al. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17(7), 4291–4300 (2021).
Janek, J. & Kolafa, J. Novel barostat implementation for molecular dynamics. J. Chem. Phys. 160(18), 184111 (2024).
Kimling, J. et al. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110(32), 15700–15707 (2006).
Shrivastava, P., Jain, T. & Kumawat, R. K. Direct PCR amplification from saliva sample using non-direct multiplex STR kits for forensic DNA typing. Sci. Rep. 11(1), 7112 (2021).
Rate this article
Login to rate this article
Comments
Please login to comment
No comments yet. Be the first to comment!
