Friday, January 23, 2026
Space & Astronomy
41 min read

Smarter Geotechnical Design: Data-Driven Pressuremeter Modulus Prediction

Nature
January 19, 20263 days ago
Data-driven optimization and pressuremeter modulus prediction using response surface methodology for smarter geotechnical design

AI-Generated Summary
Auto-generated

Response surface methodology is utilized to optimize geotechnical design and predict pressuremeter modulus. This data-driven approach enhances smart design by analyzing soil properties and mechanical characteristics. The outcome is improved prediction accuracy for geotechnical parameters, leading to more efficient and reliable engineering solutions.

Timoshenko, S. P. & Goodier, J. N. Theory of Elasticity (McGraw-Hill Book Co., 1970). https://doi.org/10.1115/1.3408648 Menard, L. The pressuremeter and foundation engineering. Sols Soils 1, 1–20 (1963). Ménard, L. The pressuremeter test: Principles and applications. Geotech. Test. J. 29, 1–15 (2006). Gao, K., Cheng, Z., Song, Y., Yin, S. & Chen, Y. Machine learning–driven surrogate model development for geotechnical numerical simulation. Geotech. Res. 12, 71–84. https://doi.org/10.1680/jgere.23.00090 (2025). Li, H., Wang, Y. & Xu, L. Influence of soil properties on pressuremeter modulus prediction. Geotech. Geol. Eng. 40, 567–580 (2022). Assia, A., Bencheikh, M., Boukour, S. & Bahloul, O. Widiane Qatr Ennada, Z. Enhancement of the mechanical characteristics of a green mortar under extreme conditions: Experimental study and optimization analysis. Iran. J. Sci. Technol. Trans. Civ. Eng. 49, 2575–2599. https://doi.org/10.1007/s40996-024-01612-5(2024) (2024). Boukhatem, G. et al. Impact of addition of polyvinyl chloride on the properties of clayey soil using experimental approach and optimization for geotechnical engineering applications. Sci. Rep. 15, 19901. https://doi.org/10.1038/s41598-025-95080-0 (2025). Xu, L., Zhang, Y. & Li, X. Application of response surface methodology in geotechnical engineering: A review. Geotech. Res. 8, 89–102 (2021). Boukhatem, G. et al. Optimizing properties of clayey soil using lime and waste marble powder: A sustainable approach for engineering applications. Front. Mater. 11, 1392875. https://doi.org/10.3389/fmats.2024.1392875 (2024). Bencheikh, M. et al. Recent tendencies in the use of the response surface method in the stability of a synthetic retaining wall. Geotech. Eng. J. SEAGS AGSSEA. 54, 38–49 (2023). Jaffar, S. T. A. et al. Data-driven intelligent modeling of unconfined compressive strength of heavy metal-contaminated soil. J. Rock. Mech. Geotech. Eng. 17, 1801–1815 (2025). https://doi.org/10.1016/j.jrmge.2024.05.025 Handel, N., Aidoud, A., Bencheikh, M., Hafsi, H. & Bellucci, S. Microstructural characterization and multi objective optimization of concrete containing recycled gravel and crystallized slag: A box Behnken design methodology. Iran. J. Sci. Technol. Trans. Civ. Eng. 49, 4521–4545. https://doi.org/10.1007/s40996-024-01718-w (2025). Raja, M. N. A., Jaffar, S. T. A., Bardhan, A. & Shukla, S. K. Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling. J. Rock Mech. Geotech. Eng. 15, 773–788. https://doi.org/10.1016/j.jrmge.2022.04.012 (2023). Zangeneh, N., Azizian, A., Lye, L. & Popescu, R. Application of response surface methodology in numerical geotechnical analysis. In 55th Canadian Society for Geotechnical Conference, Hamilton, Ontario (2002). Zhang, J., Li, H. & Wang, Z. Artificial intelligence in geotechnical engineering: A comprehensive review. J. Rock Mech. Geotech. Eng. 13, 1234–1250 (2021). Xu, W., Zhang, J. & Guan, Y. Machine learning for predicting soil behavior in pressuremeter tests. Comput. Geotech. 145, 104678 (2023). Khan, M. A., Yallese, M. R. & Liu, H. Multi-objective optimization in geotechnical design: A review of desirability functions and response surface methodology. J. Geotech. Geoenviron. Eng. 149, 04023012 (2023). Yallese, M. R., Khan, M. A. & Liu, H. Application of desirability functions for multi-objective optimization in geotechnical design. Comput. Geotech. 140, 104532 (2022). Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. Response Surface Methodology in Process and Product Optimization Using Designed Experiments 4th edn (Wiley, 2016). Montgomery, D. C. Design and Analysis of Experiments 9th edn (Wiley, 2017). Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009). Molnar, C. Interpretable Machine Learning (Lulu, 2019). Zhang, Q., Xu, L. & Wang, Y. Optimizing foundation design using machine learning and advanced statistical methods. Geotech. Geol. Eng. 42, 45–60 (2024). Wang, Z., Zhang, Q. & Xu, W. Response surface methodology for optimizing geotechnical parameters in foundation design. Int. J. Geomech. 22, 04022035 (2022). Wang, Z., Zhang, Q. & Xu, L. Advanced modeling and optimization techniques in geotechnical engineering using design expert 13. Int. J. Geomech. 22, 04022045 (2022). Zhang, W. et al. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challenge. Gondwana Res. 109, 1–19. https://doi.org/10.1016/j.gr.2022.04.001 (2022). Baghbani, A., Choudhury, T. A., Costa, S. & Reiner, J. Application of artificial intelligence in geotechnical engineering: A state-of-the-art review. Earth-Sci. Rev. 231, 104064. https://doi.org/10.1016/j.earscirev.2022.104064 (2022). Zhang, W., Li, H., Gu, X., Han, L. & Wang, L. Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges. Appl. Soft Comput. 136, 110181. https://doi.org/10.1016/j.asoc.2022.110181 (2023). Shao, W. et al. The application of machine learning techniques in geotechnical engineering: A review and comparison. Mathematics 11(18), 3932. https://doi.org/10.3390/math11183932 (2023). Ramasamy, D., Veerasamy, D. & Sivamani, S. The future of geotechnical engineering through deep learning: A concise literature review. J. Inf. Syst. Eng. Manag. 10(1), 1–12. https://doi.org/10.55267/iadt.2025.100101 (2025). Zhang, P., Yin, Z. & Jin, Y. F. Machine learning-based modelling of soil properties for geotechnical design: Review, tool development and comparison. Arch. Comput. Methods Eng. 28, 3271–3292. https://doi.org/10.1007/s11831-021-09613-2 (2021). Lakehal, R. & Djemili, L. Studying the effect of a variation in the main parameters on stability of homogeneous Earth dams using design experiment. J. Water Land. Dev. 34, 173–179. https://doi.org/10.1515/jwld-2017-0051 (2017). Golnezhad, M. Analyse physico-mécanique des formations argileuses gonflantes Dans La région Sud du Lac d’Urmia, Iran. Civ. Geoeng. Lett. 1(1), e100007. https://doi.org/10.22034/CGEL.1.1.e100007 (2024). Aslani, H., Ebrahimi, M., Arslan, S., Yılmaz, A. & Khodadad, M. Investigating the influence of moisture content on the plasticity of clayey soils. Civ. Geoeng. Lett. 2(1), e100034. https://doi.org/10.22034/CGEL.2.1.e100034 (2025). Fatemi, M., Alizade, S. & Gorbani, M. Physical properties of clayey soil in the development of agricultural strategies. Civ. Geoeng. Lett. 2(2), e100041. https://doi.org/10.22034/CGEL.2.2.e100041 (2025). Phoon, K. & Zhang, W. Future of machine learning in geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 16(2), 123–137. https://doi.org/10.1080/17499518.2022.2082345 (2022). Liu, H., Su, H., Sun, L. & Dias-da-Costa, D. State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering. Artif. Intell. Rev. https://doi.org/10.1007/s10462-024-10613-2 (2024). Yaghoubi, E., Yaghoubi, E., Khamees, A. & Vakili, A. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Comput. Appl. https://doi.org/10.1007/s00521-024-09012-3 (2024). Mitelman, A., Yang, B., Urlainis, A. & Elmo, D. Coupling geotechnical numerical analysis with machine learning for observational method projects. Geosciences 13(7), 184. https://doi.org/10.3390/geosciences13070184 (2023). Wang, Y. & Tian, H. Digital geotechnics: From data-driven site characterisation towards digital transformation and intelligence in geotechnical engineering. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 17(4), 1–15. https://doi.org/10.1080/17499518.2023.2271234 (2023). Corrêa-Silva, M. et al. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags. J. Clean. Prod. 272, 122703. https://doi.org/10.1016/j.jclepro.2020.122703 (2020). Maira Carabajal, C. M., Teglia, S. & Cerutti, M. J. Culzoni and Héctor C. Goicoechea. Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization. Microchem. J. https://doi.org/10.1016/j.microc.2019.104436 (2019). Cristelo, N., Glendinning, S., Fernandes, L. & Pinto, A. Effects of alkaline-activated fly ash and portland cement on soft soil stabilisation. Acta Geotech. 8, 395–409. https://doi.org/10.1007/s11440-012-0191-5 (2013). Cristelo, N., Glendinning, S. & Pinto, A. T. Deep soft soil improvement by alkaline activation. Proc. Inst. Civ. Eng. Ground Improv. 164(2), 73–82. https://doi.org/10.1680/grim.2011.164.2.73 (2011). Rios, S. et al. Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-base. Road. Mater. Pavement Des. 19(1), 1–17. https://doi.org/10.1080/14680629.2016.1262442 (2018). Cristelo, N., Glendinning, S. & Teixeira Pinto, A. Deep soft soil improvement using alkaline activated fly ash. Géotechnique 63(9), 793–800. https://doi.org/10.1680/geot.12.P.033 (2013). Nikbakht, M. et al. An experimental study for swelling effect on repairing of cracks in fine-grained clayey soils. Appl. Sci. 12(17), 1–14. https://doi.org/10.3390/app12178596 (2022). Messaouda, B., Assia, A., Salima, B., Nacera, K. & Lazhar, B. Numerical modeling of the behavior of a surface foundation located in the proximity of a slope. Soil Rocks São Paulo 47(1), 1–11. https://doi.org/10.28927/SR.2024.008722 (2024). Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D. V. & Silva, R. Ground improvement using alkali-activated fly ash with blast furnace slag. Constr. Build. Mater. 32, 304–311. https://doi.org/10.1016/j.conbuildmat.2011.11.103 (2012). Rios, S., Cristelo, N., Fonseca, T. & Ferreira, C. Stiffness behavior of soils stabilized with alkali-activated cement. J. Mater. Civ. Eng. 28(2), 04016156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001392 (2016). Ghafurian, S. & Toufigh, V. The performance of geopolymers in soil stabilization: A review. Constr. Build. Mater. 259, 120313. https://doi.org/10.1016/j.conbuildmat.2020.120313 (2020). Wang, K., Niu, D., Tang, C. & Shi, B. Mechanical behavior of fiber-reinforced soils: A review. Geotext. Geomembr. 50, 131–150. https://doi.org/10.1016/j.geotexmem.2022.01.003 (2022). Raja, M. N. A., Mercado, V., Abdoun, T. & El-Sekelly, W. Seismic site amplification prediction- an integrated bayesian optimisation explainable machine learning approach. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 19(3), 573–592. https://doi.org/10.1080/17499518.2025.2521870 (2025). Boudermine, H., Boumaaza, M., Belaadi, A., Bourchak, M. & Bencheikh, M. Performance analysis of Biochar and W. Robusta palm waste reinforced green mortar using response surface methodology and machine learning methods. Constr. Build. Mater. 438, 137214. https://doi.org/10.1016/j.conbuildmat.2024.137214 (2024). Tang, C., Shi, B., Zhao, L. & Wang, B. Effect of polypropylene fiber on strength and thermal properties of soil. Cold Reg. Sci. Technol. 143, 9–15. https://doi.org/10.1016/j.coldregions.2017.08.001 (2017). Tang, C., Wang, D., Cui, Y. J., Shi, B. & Li, J. Tensile strength of fiber-reinforced soil. J. Mater. Civ. Eng. 28(7), 04016046. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001526 (2016). Li, J., Tang, C., Wang, D., Pei, X. & Shi, B. Effect of discrete fibre reinforcement on soil tensile strength. J. Rock Mech. Geotech. Eng. 6(2), 133–139. https://doi.org/10.1016/j.jrmge.2014.01.006 (2014). Liu, J., Li, X., Li, G. & Zhang, J. Investigation of the mechanical behavior of polypropylene fiber-reinforced red clay. Appl. Sci. 11(22), 10521. https://doi.org/10.3390/app112210521 (2021). Fatahi, B., Khabbaz, H. & Le, T. M. Swelling characteristics of clayey soil stabilized with lime and natural fibers. Int. J. Geomech. 12(1), 1–9. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000142 (2012). Singh, B., Shukla, S. K. & Sharma, R. Soil stabilization using natural fibers: An overview. Environ. Geotech. 8(1), 1–14. https://doi.org/10.1680/jenge.19.00041 (2021). Yadav, R. K., Tiwari, D. & Jha, S. K. A review of natural fiber reinforced soil. Mater. Today Proc. 50, 1450–1456. https://doi.org/10.1016/j.matpr.2021.07.420 (2022). Duan, Z., Xu, W. & Tang, C. Deep learning in geotechnical engineering: A comprehensive review. Autom. Constr. 126, 103688 (2021). Ghanbari, A., Eslami, A. & Abdi, M. Predicting pressuremeter modulus using machine learning methods. Soils Found. 63, 103599 (2023). Zhang, Y., Li, X. & Xu, L. An integrated model combining artificial intelligence and response surface methodology for geotechnical analysis. Geotech. Geol. Eng. 41, 1123–1142 (2023). Wang, B., Chen, L. & Liu, H. Hybrid optimization models in geotechnical applications. Eng. Comput. 39, 889–905 (2022). Noura, M., Boutouil, M. & Amziane, S. Valorization of dredged sediments for road construction: A sustainable approach. Transp. Geotech. 33, 100755 (2022). Zhao, H., Zhang, Y. & Xu, L. Study of mechanical properties of dredged soils stabilized with lime and geopolymers. Mar. Georesour. Geotechnol. 42, 342–352 (2024). Li, X., Zhang, Y. & Xu, W. Statistical modeling of geotechnical data using response surface techniques. Comput. Geotech. 141, 104529 (2022). Xu, L., Wang, Y. & Zhang, Q. Design optimization in geotechnical engineering using artificial intelligence and RSM. J. Geotech. Eng. 45, 289–305 (2024).

Rate this article

Login to rate this article

Comments

Please login to comment

No comments yet. Be the first to comment!
    Geotechnical Design: Pressuremeter Modulus Prediction