Health & Fitness
29 min read
Cold Plasma Technology: A Breakthrough in Inhibiting Staphylococcus epidermidis and E. coli
Nature
January 19, 2026•3 days ago
AI-Generated SummaryAuto-generated
Cold atmospheric plasma (CAP) technology effectively inhibits *Staphylococcus epidermidis* and *Escherichia coli*. This non-thermal method utilizes reactive species to decontaminate surfaces. Studies indicate CAP's potential for microbial inactivation, with research exploring its applications in various fields, including medicine and food processing, addressing concerns of antimicrobial resistance.
Aljeldah, M. M. Antimicrobial resistance and its spread is a global threat. Antibiotics 11, 1082. https://doi.org/10.3390/antibiotics11081082 (2022).
Mirpour, S. et al. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: a randomized clinical trial. Sci. Rep. https://doi.org/10.1038/s41598-020-67232-x (2020).
Lee, H. S., Park, H. H. & Min, S. C. Microbial decontamination of red pepper powder using pulsed light plasma. J. Food Eng. 284, 110075. https://doi.org/10.1016/j.jfoodeng.2020.110075 (2020).
Heo, Y. S. et al. Effect of inkjet-printed flexible dielectric barrier discharge plasma on reduction of pathogen and quality changes on sliced cheese. LWT 143, 111128. https://doi.org/10.1016/j.lwt.2021.111128 (2021).
Tanaka, H. et al. State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev. Modern Plasma Phys. https://doi.org/10.1007/s41614-017-0004-3 (2017).
Ramezan, Y., Kamkari, A., Lashkari, A., Moradi, D. & Najafi Tabrizi, A. A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci. Nutr. 12, 1502–1527. https://doi.org/10.1002/fsn3.3897 (2023).
Dünnbier, M. et al. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry. J. Phys. D Appl. Phys. 46, 435203. https://doi.org/10.1088/0022-3727/46/43/435203 (2013).
Makabe, T. Metastables as a probe for low-temperature plasma characteristics in argon. J. Phys. D Appl. Phys. 52, 213002. https://doi.org/10.1088/1361-6463/ab0531 (2019).
Laroussi, M. & Leipold, F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233, 81–86. https://doi.org/10.1016/j.ijms.2003.11.016 (2004).
Kondeti, V. S. S. K. et al. Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radical Biol. Med. 124, 275–287. https://doi.org/10.1016/j.freeradbiomed.2018.05.083 (2018).
Xu, H., Fang, C., Shao, C., Li, L. & Huang, Q. Study of the synergistic effect of singlet oxygen with other plasma-generated ROS in fungi inactivation during water disinfection. Sci. Total Environ. 838, 156576. https://doi.org/10.1016/j.scitotenv.2022.156576 (2022).
McQuaid, H. N., Rutherford, D., Mariotti, D. & Maguire, P. D. Generation and delivery of free hydroxyl radicals using a remote plasma. Plasma Sour. Sci. Technol. https://doi.org/10.1088/1361-6595/acb07f (2023).
Dharini, M., Jaspin, S. & Mahendran, R. Cold plasma reactive species: generation, properties, and interaction with food biomolecules. Food Chem. 405, 134746. https://doi.org/10.1016/j.foodchem.2022.134746 (2023).
Zhou, R. et al. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chem. 20, 5276–5284. https://doi.org/10.1039/C8GC02800A (2018).
Liu, H. et al. Cold atmospheric plasma: an emerging immunomodulatory therapy. Adv. Ther. https://doi.org/10.1002/adtp.202300399 (2024).
Zhang, H., Zhang, C. & Han, Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl. Microbiol. Biotechnol. 107, 5301–5316. https://doi.org/10.1007/s00253-023-12618-w (2023).
Das, S., Gajula, V. P., Mohapatra, S., Singh, G. & Kar, S. Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sci. Rev. 4, 100037. https://doi.org/10.1016/j.hsr.2022.100037 (2022).
Niedźwiedź, I. W. O. N. A., Waśko, A. D. A. M., Pawłat, J. O. A. N. N. A. & Polak-Berecka, M. A. G. D. A. L. E. N. A. The state of research on antimicrobial activity of cold plasma. Polish J. Microbiol. 68, 153–164. https://doi.org/10.33073/pjm-2019-028 (2019).
Yousfi, M. et al. Non thermal plasma sources of production of active species for biomedical uses: analyses, optimization and prospect. Biomed. Eng. Front. Chall. https://doi.org/10.5772/19129 (2011).
Bolgeo, T. et al. The role of cold atmospheric plasma in wound healing processes in critically Ill patients. J. Personal. Med. 13, 736. https://doi.org/10.3390/jpm13050736 (2023).
Dubey, S. K. et al. Cold atmospheric plasma therapy in wound healing. Process Biochem. 112, 112–123. https://doi.org/10.1016/j.procbio.2021.11.017 (2022).
Gan, L. et al. Cold atmospheric plasma applications in dermatology: a systematic review. J. Biophotonics https://doi.org/10.1002/jbio.202000415 (2020).
Khalaf, A. T., Abdalla, A. N., Ren, K. & Liu, X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur. J. Med. Res. https://doi.org/10.1186/s40001-024-02088-9 (2024).
Braný, D., Dvorská, D., Halašová, E. & Škovierová, H. Cold atmospheric plasma: a powerful tool for modern medicine. Int. J. Mol. Sci. 21, 2932. https://doi.org/10.3390/ijms21082932 (2020).
Yan, D., Sherman, J. H. & Keidar, M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8, 15977–15995. https://doi.org/10.18632/oncotarget.13304 (2016).
Basavaraju, M. & Gunashree, B. S. Escherichia coli: an overview of main characteristics. Escherichia coli Old and New Insights https://doi.org/10.5772/intechopen.105508 (2023).
Mainil, J. Escherichia coli virulence factors. Vet. Immunol. Immunopathol. 152, 2–12. https://doi.org/10.1016/j.vetimm.2012.09.032 (2013).
Namvar, A. E. et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hygiene Infect. Control https://doi.org/10.3205/dgkh000243 (2014).
Microbes, S. Atlas Oral Microbiol. https://doi.org/10.1016/b978-0-12-802234-4.00003-3 (2015).
Chessa, D., Ganau, G. & Mazzarello, V. An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries. J. Infect. Dev. Ctries. 9, 547–550. https://doi.org/10.3855/jidc.6923 (2015).
Otto, M. Molecular basis of Staphylococcus epidermidis infections. Seminars Immunopathol. 34, 201–214. https://doi.org/10.1007/s00281-011-0296-2 (2011).
Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140. https://doi.org/10.1038/nrmicro818 (2004).
Gomes, T. A. T. et al. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 47, 3–30. https://doi.org/10.1016/j.bjm.2016.10.015 (2016).
Bogdanov, T. et al. The effect of low-temperature microwave plasma on wound regeneration in diabetic rats. Processes 11, 3399. https://doi.org/10.3390/pr11123399 (2023).
Trebulová, K., Krčma, F., Skoumalová, P., Kozáková, Z. & Machala, Z. Effects of different cold atmospheric-pressure plasma sources on the yeast Candida glabrata. Plasma Process. Polym. https://doi.org/10.1002/ppap.202300048 (2023).
Hrudka, J. Automatic image analysis of the effects of non-thermal plasma on mold growth. in Proceedings of the 25th International Symposium on Plasma Chemistry (ISPC 25) POS-11–103 (ISPC, 2023).
Bader, H. & Hoigné, J. Determination of ozone in water by the indigo method. Water Res. 15, 449–456. https://doi.org/10.1016/0043-1354(81)90054-3 (1981).
Felix, E. P. & Cardoso, A. A. Colorimetric determination of ambient ozone using indigo blue droplet. J. Braz. Chem. Soc. 17, 296–301. https://doi.org/10.1590/s0103-50532006000200012 (2006).
Trebulová, K. et al. Antimycotic effects of the plasma gun on the yeast Candida glabrata tested on various surfaces. Plasma Process. Polym. https://doi.org/10.1002/ppap.202400057 (2024).
Hutchinson, I. H. Principles Plasma Diagn. https://doi.org/10.1017/cbo9780511613630 (2002).
Vozár, T. et al. Influence of plasma activated water on the growth and vitality of radish (Raphanus sativus L.). J. Phys. D Appl. Phys. 58, 185206. https://doi.org/10.1088/1361-6463/adc27a (2025).
Ruchel Khanikar, R. & Bailung, H. Cold atmospheric pressure plasma technology for biomedical application. Plasma Sci. Technol. https://doi.org/10.5772/intechopen.98895 (2022).
Scholtz, V. et al. Non-thermal plasma treatment of ESKAPE pathogens: a review. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.737635 (2021).
Mai-Prochnow, A., Clauson, M., Hong, J. & Murphy, A. B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. https://doi.org/10.1038/srep38610 (2016).
Huang, M. et al. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 132, 107445. https://doi.org/10.1016/j.bioelechem.2019.107445 (2020).
Matthes, R., Assadian, O. & Kramer, A. Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms. GMS Hygiene Infect. Control https://doi.org/10.3205/dgkh000237 (2014).
Zimmermann, J. L. et al. Test for bacterial resistance build-up against plasma treatment. New J. Phys. 14, 073037. https://doi.org/10.1088/1367-2630/14/7/073037 (2012).
Liu, J., Yang, L., Kjellerup, B. V. & Xu, Z. Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends Microbiol. 31, 1013–1023. https://doi.org/10.1016/j.tim.2023.04.009 (2023).
Dolezalova, E. & Lukes, P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry 103, 7–14. https://doi.org/10.1016/j.bioelechem.2014.08.018 (2015).
Rate this article
Login to rate this article
Comments
Please login to comment
No comments yet. Be the first to comment!
