Space & Astronomy
28 min read
Aspergillus oryzae Amylase: A Key Player in Faecalibacterium Prausnitzii Growth
Nature
January 20, 2026•2 days ago
AI-Generated SummaryAuto-generated
Aspergillus oryzae-fermented rice contains α-amylase that promotes the growth of Faecalibacterium Prausnitzii, a beneficial gut bacterium. This enzyme's activity supports the proliferation of this microbe, contributing to a healthier gut microbiome.
Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).
Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut Microbiome in health and disease. Curr. Opin. Gastrpenterol. 31, 69–75 (2015).
Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut Microbiome and the immune system. Nature 474, 327–336 (2011).
Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
Wang, J., Zhu, N., Su, X., Gao, Y. & Yang, R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells 12, 793 (2023).
Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Microbiol. 16, 341–352 (2016).
van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short- chain fatty acids. Trends Microbiol. 29, 700–712 (2021).
Koh, A., Vadder, F. D., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiver to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
Usuda, H., Okamoto, T. & Wada, K. Leakey gut: effect of dietary fiber and fats on Microbiome and intestinal barrier. Int. J. Mol. Sci. 22, 7613 (2021).
Mann, E. R., Lam, Y. K. & Uhling, H. H. Short-chain fatty acids: linking diet, the Microbiome and immunity. Nat. Rev. Immunol. 24, 577–595 (2024).
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).
Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).
Bach Knudsen, K. E. et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10, 1499 (2018).
Whitt, J. et al. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology 155, 501–513 (2018).
Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).
Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 11450 (2017).
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
Takahashi, K. et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in crohn’s disease. Digestion 93, 59–65 (2016).
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium Prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1253–1283 (2014).
Singh, V. et al. Butyrate producers, the Sentinel of gut: their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 13, 1103836 (2023).
Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of Microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
Hold, G. L., Scweizer, A., Aminov, R. I., Blaut, M. & Flint, H. J. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol. 69, 4320–4324 (2003).
Jia, W. et al. Is the abundance of Faecalibacterium Prausnitzii relevant to crohn’s disease. FEMS Microbiol. Lett. 310, 138–144 (2010).
Willing, B. P. et al. A pyrosequencing study in twins shows that Gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).
Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011).
Miquel, S. et al. Faecalibacterium Prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261 (2013).
Miquel, S. et al. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium Prausnitzii. Gut Microbes. 5, 146–151 (2014).
Lopez-Siles, M. et al. Changes in the abundance of Faecalibacterium Prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer. Inflamm. Bowel Dis. 22, 28–41 (2016).
Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in crohn’s disease. Gut 65, 415–425 (2016).
Rossi, O. et al. Faecalibacterium Prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS One. 10, e0123013 (2015).
Zhou, L. et al. Faecalibacterium Prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm. Bowel Dis. 24, 1926–1940 (2018).
Munukka, E. et al. Faecalibacterium Prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J. 11, 1667–1679 (2017).
Martín, R. et al. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol. Rev. 47, fuad039 (2023).
Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).
Kaźmierczak-Siedlecka, K. et al. Next-generation probiotics - do they open new therapeutic strategies for cancer patients? Gut Microbes. 14, 2035659 (2022).
Khan, M. T. et al. Synergy and oxygen adaptation for development of next-generation probiotics. Nature 620, 381–385 (2023).
Moens, F., Weckx, S. & De Vuyst, L. Bifidobacterial inulin-type Fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium Prausnitzii. Int. J. Food Microbiol. 231, 76–85 (2016).
Park, J. H. et al. An integrative multi-omics approach to characterize prebiotic inulin effects on Faecalibacterium Prausnitzii. Front. Bioeng. Biotechnol. 10, 825399 (2022).
Laffin, M. R. et al. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: microbial analysis from a randomized placebo-controlled trial. Hemodial. Int. 23, 343–347 (2019).
Tochio, T., Kadota, Y., Tanaka, T. & Koga, Y. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium Prausnitzii as well as bifidobacteria in humans. Foods 7, 140 (2018).
Kubota, S. et al. Kestose increases the relative abundance of Faecalibacterium spp. and nominally increases cow milk tolerant dose in children with cow’s milk allergy - preliminary results. Pol. J. Microbiol. 72, 299–306 (2023).
Kurahashi, A. et al. Intake of Koji Amazake improves defecation frequency in healthy adults. J. Fungi (Basel). 7, 782 (2021).
Piriyaprasath, K. et al. Preventive roles of rice-koji extracts and ergothioneine on anxiety- and pain-like responses under psychophysical stress conditions in male mice. Nutrients 15, 3989 (2023).
Kosakai, T. et al. Dietary fermented products using Koji mold and sweet potato- Shochu distillery by-product promotes hepatic and serum cholesterol levels and modulates gut microbiota in mice fed a high-cholesterol diet. PeerJ 7, e7671 (2019).
Ito, K. & Matsuyama, A. Koji molds for Japanese soy sauce brewing: characteristics and key enzymes. J. Fungi (Basel). 7, 658 (2021).
Zhang, L., Kang, L. & Xu, Y. Phenotypic, genomic, and transcriptomic comparison of industrial Aspergillus oryzae used in Chinese and Japanese soy sauce: analysis of key proteolytic enzymes produced by Koji molds. Microbiol. Spectr. 11, e0083622 (2023).
Kitagaki, H. Medical application of substances derived from non-pathogenic fungi Aspergillus oryzae and A. luchuensis-containing Koji. J. Fungi (Basel). 7, 243 (2021).
Yang, Y. et al. Potential roles of exogenous proteases and lipases as prebiotics. Nutrients 17, 924 (2025).
Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).
Davani-Davari, D. et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8, 92 (2019).
Smith, D. R. & Chapman, M. R. Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 1, e00131 (2010).
Allwood, J. G., Wakeling, L. T. & Bean, D. C. Fermentation and the microbial community of Japanese Koji and miso: A review. J. Food Sci. 86, 2194–2207 (2021).
Yabuki, M., Ono, N., Hoshino, K. & Fukui, S. Rapid induction of α-amylase by non-growing mycelia of Aspergillus oryzae. Appl. Environ. Microbiol. 34, 1–4 (1977).
Mørkeberg, R., Carlsen, M. & Nielsen, J. Induction and repression of α-amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiol 141, 2449–2454 (1995).
Rate this article
Login to rate this article
Comments
Please login to comment
No comments yet. Be the first to comment!
